

# The Spectrum of \$ \gamma \$ Cygni

Norman Lockyer and F. E. Baxandall

Phil. Trans. R. Soc. Lond. A 1903 201, 205-222

doi: 10.1098/rsta.1903.0017

**Email alerting service** 

Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

205

VII. The Spectrum of  $\gamma$  Cygni.

By Sir Norman Lockyer, K.C.B., F.R.S., and F. E. Baxandall, A.R.C.Sc.

Received December 3,—Read December 11, 1902.

[Plate 1.]

In a paper on "The Chemical Classification of the Stars," communicated to the Royal Society on May 4, 1899,\* one of us indicated that it was then possible to classify the stars according to their chemistry. In the case of type stars of some of the groups lists have been given't of the wave-lengths and probable origins of the lines on which the classification is based. The type stars thus dealt with represent the groups of higher temperature, viz., α Cygni (Cygnian), Rigel (Rigelian), ζ Tauri (Taurian), Bellatrix (Crucian),  $\epsilon$  Orionis (Alnitamian), and Sirius (Sirian).

The spectrum of stars of the Polarian type—representing a temperature stage next lower than that of a Cygni,—is, so far as the relative intensities of the metallic lines are concerned, closely allied to that of the chromosphere. It is also interesting as the connecting link between the spectrum of the Aldebarian stars, in which the arc lines of the metallic elements predominate, and that of a Cygni, chiefly composed of the enhanced lines of some of the metals. It has hence been thought important to make a careful reduction of the spectrum of a star of this group. Of the existing photographs of Polarian type spectra at Kensington, that of  $\gamma$  Cygni is the best for the purpose of reduction, and for this reason has been selected.

## Method of Reduction.

The wave-lengths have been determined by measuring the relative positions of the lines on the plate with a micrometer, and subsequent use of Hartmann's interpolation In selecting the lines to be used as bases for the reduction, only sharplydefined lines with well-authenticated origins, and of the simple nature of which there

\* 'Roy Soc. Proc.,' vol. 65, p. 186.

VOL. CCI.—A 337.

† 'Catalogue of 470 Brighter Stars,' published by the Solar Physics Committee.

19.6.03

#### SIR NORMAN LOCKYER AND MR. F. E. BAXANDALL

is little doubt, were taken; lines which were suspected, however slightly, of having a double or complex origin were rejected. A list of the lines used is here given:—

| λ.                                                              | Origin.                                                                               | λ.                                                              | Origin.                                                                                                     |
|-----------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| $3900 \cdot 68$ $4012 \cdot 54$ $4215 \cdot 70$ $4415 \cdot 29$ | $egin{array}{c} p \ { m Ti} \\ p \ { m Ti} \\ p \ { m Sr} \\ { m Fe} \end{array} \ .$ | $4501 \cdot 45$ $4584 \cdot 02$ $4657 \cdot 38$ $4780 \cdot 20$ | $\begin{array}{c} p \; \mathrm{Ti} \\ p \; \mathrm{Fe} \\ p \; \mathrm{Ti} \\ p \; \mathrm{Ti} \end{array}$ |

The result of a previous reduction of the spectrum of  $\alpha$  Cygni, already published, serves as a valuable check on the accuracy of the reduced wave-lengths, as there are many lines common to the two spectra, and there can be no doubt as to the identity of most of the stronger  $\alpha$  Cygni lines with enhanced lines of some of the metals, as has been shown in a previous paper.\*

In the table at the end of the paper the  $\gamma$  Cygni lines are compared with those reduced at Kensington from the spectrum of  $\alpha$  Cygni and that of the chromosphere, and also with those recorded by Pickering† in the spectrum of  $\delta$  Canis Majoris. The latter star is selected by Pickering as typical of Group XIIIc. in his classification, in which group he also includes  $\gamma$  Cygni. In the case of the chromosphere, in order to keep the table within moderate limits, only those lines which agree with  $\gamma$  Cygni lines have been inserted, but of the chromospheric lines omitted none are prominent except those of helium.

# Comparison of y Cygni and Chromosphere.

Reference to the table will show that the metallic and protometallic lines have, speaking broadly, about the same relative intensities in the spectra of  $\gamma$  Cygni and the chromosphere. It would thus appear that the temperature and electrical conditions prevailing in the chromospheric vapours which furnish the metallic lines are nearly identical with those appertaining to the absorbing atmosphere of  $\gamma$  Cygni. To arrive at any conclusion as to which of the two light sources in question represents the higher temperature, it is necessary to study in detail the comparative intensities of well-known lines. For this purpose, two sets of lines have been considered: (1) the strongest unenhanced lines of the metals represented; (2) the most marked enhanced lines of the metals. In the following table a comparison is given of the intensities of the strongest lines of iron, manganese, chromium, cobalt, barium, calcium, aluminium, and titanium, as they occur in  $\gamma$  Cygni and the chromosphere.

<sup>\* &#</sup>x27;Roy. Soc. Proc.,' vol. 64, p. 321.

<sup>† &#</sup>x27;Annals Harv. Coll. Obs.,' vol. 28, Part I., p. 79.

Comparative Intensities of the Strongest Metallic Lines in  $\gamma$  Cygni and the Chromosphere.

| a.                                                                                                                                                                                                                                   |                                                    | Inter                                                            | nsity.                                          | Q.                                                                                                                                                                                                                                      |                                     | Inte                                                           | nsity.                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|
| Strongest arc lines.                                                                                                                                                                                                                 | Origin.                                            | γ Cygni.<br>Max. = 10.                                           | Chromosphere. Max. = 10.                        | Strongest are lines. $\lambda$ .                                                                                                                                                                                                        | Origin.                             | γ Cygni.<br>Max. = 10.                                         | Chromosphere. Max. = 10.                                         |
| $\begin{cases} 4045 \cdot 98 \\ 4063 \cdot 76 \\ 4071 \cdot 91 \\ 4132 \cdot 24 \\ 4144 \cdot 04 \\ 4202 \cdot 20 \\ 4260 \cdot 64 \\ 4271 \cdot 33 \\ 4271 \cdot 93 \\ 4383 \cdot 72 \\ 4404 \cdot 93 \\ 4415 \cdot 29 \end{cases}$ | Fe<br>Fe<br>Fe<br>Fe<br>Fe<br>Fe<br>Fe<br>Fe<br>Fe | 8<br>8<br>5<br>5-6<br>8<br>5<br>6<br>6<br>6<br>4-5<br>3-4<br>5-6 | 7<br>6-7<br>6<br>3<br>5-6<br>3<br>4<br>4-5<br>5 | $\begin{array}{c} 4528 \cdot 80 \\ 4030 \cdot 92 \\ 4033 \cdot 22 \\ 3995 \cdot 46 \\ 4226 \cdot 90 \\ 3989 \cdot 91 \\ 3998 \cdot 79 \\ 3944 \cdot 16 \\ 3961 \cdot 67 \\ 4554 \cdot 21 \\ 4254 \cdot 51 \\ 4274 \cdot 96 \end{array}$ | Fe Mn Mn Co Ca Ti Ti Al Al Ba Cr Cr | 4<br>5<br>4<br>5<br>8<br>4<br>5<br>3-4<br>5-6<br>5-6<br>4<br>4 | 3<br>5<br>3-4<br>3-4<br>7<br>2-3<br>4<br>5<br>6<br>7-8<br>6<br>5 |

These intensities cannot be accepted as absolute, but as the same limits (1 to 10) are used in the two spectra, it may be conceded that the intensities are roughly comparable. It will be noticed that in the majority of cases the lines appear to Notable exceptions, be somewhat weaker in the chromosphere than in  $\gamma$  Cygni. however, to this are the lines of aluminium, chromium, and barium.

In the next table, the intensities of the more prominent enhanced lines of iron, magnesium, chromium, titanium, and strontium are similarly compared.

COMPARATIVE Intensities of Enhanced Lines in ~ Cyoni and the Chromosphere

| COMPARAII                                                                                                                                                                                                                                                                   | AE THOSE                                                              | isines of 1                           |                                                                     | Lines in $\gamma$ Cygn                                                                                                                                                             | n and or                                | ie Ontomo                                                             | sphere.                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------------------|------------------------------------------|
|                                                                                                                                                                                                                                                                             |                                                                       | Inter                                 | nsity.                                                              |                                                                                                                                                                                    |                                         | Inter                                                                 | nsity.                                   |
| Enhanced lines. λ.                                                                                                                                                                                                                                                          | Origin.                                                               | γ Cygni.<br>Max. = 10.                | Chromosphere. Max. = 10.                                            |                                                                                                                                                                                    | Origin.                                 | γ Cygni.<br>Max. = 10.                                                | Chromosphere. Max. = 10.                 |
| $\begin{array}{c} 4233\cdot 33 \\ 4508\cdot 46 \\ 4515\cdot 51 \\ 4520\cdot 40 \\ 4522\cdot 69 \\ 4549\cdot 64 \\ 4584\cdot 02 \\ 3900\cdot 68 \\ 3913\cdot 61 \\ 4012\cdot 54 \\ 4161\cdot 68 \\ 4163\cdot 82 \\ 4300\cdot 21 \\ 4321\cdot 20 \\ 4338\cdot 08 \end{array}$ | p Fe p Ti | 7-8 4 4 3 4 8 8 4-5 4 5 6-7 5-6 6 8 9 | 6-7<br>5<br>4<br>3<br>4<br>7-8<br>7<br>4<br>6<br>5-6<br>3<br>4<br>5 | 4399 · 94<br>4443 · 98<br>4450 · 65<br>4468 · 66<br>4501 · 45<br>4534 · 14<br>4549 · 81<br>4563 · 94<br>4572 · 16<br>4558 · 83<br>4588 · 38<br>4077 · 89<br>4215 · 70<br>4481 · 30 | p Ti | 5-6<br>9<br>4<br>6<br>6<br>6<br>8<br>4-5<br>6-7<br>3<br>8<br>9<br>5-6 | 5-6. 7 5 6 7 7-8 7-8 7-8 7-8 3-4 3 10 10 |

208

Here we find that of the 29 lines included 12 have a greater intensity in  $\gamma$  Cygni, 11 in the chromosphere, while 6 have been estimated as having equal intensities in the two spectra, thus showing a very evenly-balanced state of affairs.

Taking the two comparisons together, it would appear that the evidence points to the unenhanced lines being, upon the whole, somewhat weakened in the chromosphere at the expense of the enhanced lines. This result tends to show that if any distinction is to be made between the temperature conditions of the two light sources in question, the chromosphere must be placed on a slightly higher level.

The most marked difference between the spectrum of  $\gamma$  Cygni and that of the chromosphere occurs in the case of the helium lines. There is no evidence of their presence in the former spectrum, while in the latter the stronger helium lines are quite conspicuous. We do not, however, know much about the relative positions of the helium vapour and the metallic vapours in the chromosphere, and it is quite possible that the temperature conditions of the two are vastly different. Another notable difference between the two spectra is in regard to the well-known enhanced line of magnesium,  $\lambda$  4481.3. This is fairly prominent in  $\gamma$  Cygni, but appears to be entirely lacking in the chromospheric spectrum. As the enhanced lines of other elements are well developed in the chromospheric spectrum, this is a very curious result, and difficult to account for, especially as the line in question is well marked in both  $\gamma$  Cygni and  $\alpha$  Cygni, between which the chromosphere must apparently be placed from temperature considerations.

In the transition from stars resembling the Sun, through  $\gamma$  Cygni (Polarian), the chromosphere, to  $\alpha$  Cygni (Cygnian), the gradual strengthening or weakening of well-known groupings of metallic lines can be traced. There cannot be any doubt about the authenticity in the spectra of  $\gamma$  Cygni and the chromosphere of such groups and pairs of metallic lines as the aluminium pair ( $\lambda\lambda$  3944·16, 3961·67), manganese triplet ( $\lambda\lambda$  4030·88, 4033·22, 4034·64), iron triplets ( $\lambda\lambda$  4045·98, 4063·76, 4071·91) and ( $\lambda\lambda$  4383·72, 4404·93, 4415·29), chromium triplet ( $\lambda\lambda$  4254·51, 4274·96, 4289·89), and the enhanced iron quartette ( $\lambda\lambda$  4508·46, 4515·51, 4520·40, 4522·69).

Moreover, reference to the Kensington publications of eclipse results,\* in addition to those of Fróst,† Evershed,‡ Mitchell,§ and Humphreys|| will show that there is a general consensus of opinion that the chromospheric lines have, upon the whole, metallic origins. This is entirely at variance with the conclusion arrived at by Professor Dewar, and embodied in his Presidential Address to the British Association, 1902, that the chromospheric lines are to be accounted for by the lines of krypton, xenon, and those of the most volatile atmospheric gases. In this connection,

<sup>\* &#</sup>x27;Phil. Trans.,' A, vol. 197, p. 208.

<sup>† &#</sup>x27;Astrophysical Journal,' vol. 12, p. 307.

<sup>† &#</sup>x27;Phil. Trans.,' A, vol. 197, p. 381.

<sup>§ &#</sup>x27;Astrophysical Journal,' vol. 15, p. 97.

<sup>4 &#</sup>x27;Astrophysical Journal,' vol. 15, p. 313.

he says,\* "In the 'Astrophysical Journal' for June last is a list of 339 lines in the spectrum of the corona, photographed by Humphreys. . . . . Of these, no fewer than 209 do not differ from lines we have measured in the most volatile gases of the atmosphere, or of krypton, or xenon, by more than one unit of wave-length on Ångström's scale, a quantity within the limit of probable error."

It may be here pointed out that Humphreys' list of 339 lines referred to the spectrum of the solar chromosphere, and not to that of the corona. The latitude allowed (one tenth-metre) in comparing the wave-lengths of the lines in the solar and terrestrial spectra is far greater than can be accepted in modern exact work, and as the average error of Humphreys' wave-lengths is probably less than 0.2 tenth-metre, it is obvious that, until Professor Dewar can give the wave-lengths of his lines to a greater accuracy than that of the nearest tenth-metre, little weight can be attached to the results of his comparison. His conclusion, moreover, appears to have been based merely on apparent similarity of wave-lengths, without taking into account the relative intensities of the lines in the spectra compared, or of the correspondence of conspicuous groupings of lines, which would certainly tend to clear matters.

The extreme limits of Humphreys' 339 eclipse lines are, roughly speaking, 2000 tenth-metres apart, which gives an average interval of 6 tenth-metres. In Professor Dewar's three lists of gaseous lines there occur between the same limits 564 lines, with an average interval of 4 tenth-metres. If we assume, then, that the lines of each set are evenly distributed over the region involved, there will be certain to be a large number of lines in the two sets which agree in position within the limits of error allowed (one tenth-metre).

Many lines have gaseous origins assigned to them which have been hitherto universally acknowledged by the various workers in the subject to be representatives of well-known metallic lines, and groups of lines previously given as due to some particular metal are split up by Professor Dewar's analysis, some members being ascribed to krypton, others to xenon, &c., while other members remain clear of his gaseous lines. The following table contains several groups of chromospheric lines, which are all included in both Humphreys' list† and that given in the Kensington eclipse publication,‡ and which have been ascribed to the same metals in the two records. In the comparison column, Liveing and Dewar's gaseous lines are given which agree within one tenth-metre (this being the difference accepted by Professor Dewar in his analytical comparison) with the chromospheric lines.

<sup>\* &#</sup>x27;Nature,' vol. 66, p. 475.

<sup>† &#</sup>x27;Astrophysical Journal,' vol. 15, p. 318.

<sup>‡ &#</sup>x27;Phil. Trans.,' A, vol. 197, p. 208.

Comparison of Groups of Chromospheric Lines belonging to Various Metals with LIVEING and DEWAR'S Gaseous Lines.

| Chromosphere<br>(Humphreys).                                                             | Ori            | gin.                                                                                                        | At<br>(Liv        | mospheric Gase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s<br>LR).                                  |
|------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| λ.                                                                                       | Humphreys.     | Kensington.                                                                                                 | Most volatile.    | Xenon.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Krypton.                                   |
| $\begin{cases} 3829 \cdot 5 \\ 3832 \cdot 5 \\ 3838 \cdot 4 \end{cases}$                 | Mg<br>Mg<br>Mg | $egin{array}{c} \mathrm{Mg} \\ \mathrm{Mg} \\ \mathrm{Mg} \end{array}$                                      | 3830              | 3829<br>—<br>—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                            |
| $\left\{ \begin{matrix} 3944\cdot 0 \\ 3961\cdot 6 \end{matrix} \right.$                 | Al<br>Al       | Al<br>Al                                                                                                    | water of          | 3944.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            |
| $\begin{cases} 4046 \cdot 0 \\ 4063 \cdot 7 \\ 4071 \cdot 9 \end{cases}$                 | Fe<br>Fe<br>Fe | Fe<br>Fe<br>Fe                                                                                              | 4047              | Annual State of the State of th | 4045                                       |
| $\left\{ \begin{array}{l} 4077\cdot 9 \\ 4215\cdot 7 \end{array} \right.$                | Sr<br>Sr       | $rac{p}{p}rac{\mathrm{Sr}}{\mathrm{Sr}}$                                                                  | Name and A        | $\phantom{00000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a reconstrue                               |
| $\begin{cases} 4254 \cdot 5 \\ 4274 \cdot 9 \\ 4289 \cdot 9 \end{cases}$                 | Cr<br>Cr<br>Cr | Cr<br>Cr<br>Cr                                                                                              | 4290              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Palantar<br>                               |
| $\begin{cases} 4383 \cdot 6 \\ 4404 \cdot 9 \\ 4415 \cdot 2 \end{cases}$                 | Fe<br>Fe<br>Fe | Fe<br>Fe<br>Fe                                                                                              | 4415              | Anna Anna Anna Anna Anna Anna Anna Anna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | entrances<br>Announces<br>United announces |
| $\begin{cases} 4508 \cdot 5 \\ 4515 \cdot 5 \\ 4520 \cdot 7 \\ 4522 \cdot 9 \end{cases}$ | Fe ?<br>Ti     | $\begin{array}{c} p \; \mathrm{Fe} \\ p \; \mathrm{Fe} \\ p \; \mathrm{Fe} \\ p \; \mathrm{Fe} \end{array}$ | 4508<br>—<br>4523 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |

From this comparison it would appear that Professor Dewar claims for xenon, one member of the magnesium triplet (λλ 3829·5–3838·4), one component of the aluminium double ( $\lambda\lambda$  3944.0, 3961.6) and one member of the strontium pair ( $\lambda\lambda$  4077.9, 4215.7); for krypton one member of the iron triplet (λλ 4046·0-4071·9); and for the most volatile gases, one member of the magnesium triplet, one of each of two iron triplets, one of a chromium triplet, and two members of the enhanced iron quartette (λλ 4508·5–4522·9). It is, of course, quite possible that some of these gaseous lines may account for the coronal lines; but that the chromospheric lines are, in the main, produced by metallic vapours, there can be no doubt.

## Comparison of $\gamma$ Cygni and $\alpha$ Cygni.

It will be seen that there is a much greater number of lines in the spectrum of γ Cygni than in that of α Cygni. The lines occurring solely in γ Cygni which have been traced to any terrestrial origin are found to be attributable to the ordinary

metallic arc lines, as distinguished from the enhanced lines. These, which occur so prominently in  $\alpha$  Cygni, are, with certain exceptions, present also in  $\gamma$  Cygni, so that the latter spectrum practically consists of the  $\alpha$  Cygni spectrum (with modifications of the intensities of the enhanced lines of various metals) with the ordinary arc lines added, and the two sets are of about equal importance. This is a condition of affairs intermediate to that of the Aldebarian stars—in which the ordinary lines are well-developed and the proto-metallic lines weak or missing—and  $\alpha$  Cygni, where the enhanced lines are very prominent, to the nearly total exclusion of the metallic arc lines.

The only line of any prominence which occurs solely in  $\alpha$  Cygni is the silicium line  $\lambda$  4131.1 This is one component of the silicium double which is so conspicuous in the spectra of  $\alpha$  Cygni, Rigel, Sirius, &c. There is certainly a line in  $\gamma$  Cygni apparently coincident with the other component  $\lambda$  4128.1, but in the absence of its companion it must be concluded that the  $\gamma$  Cygni line in question has probably an origin entirely distinct from silicium. The silicium double mentioned is also absent from the chromospheric spectrum, which closely resembles that of  $\gamma$  Cygni.

In a paper "On the Order of Appearance of Chemical Substances at different Stellar Temperatures,"\* it was pointed out that the enhanced lines of the various metals attained a maximum intensity at varying levels of the stellar temperature sequence. The present detailed investigation of the  $\gamma$  Cygni spectrum confirms this result, the enhanced lines of strontium, scandium, and titanium being at their strongest in  $\gamma$  Cygni and much stronger than in  $\alpha$  Cygni, while in the latter spectrum the enhanced lines of iron, chromium, and magnesium, attain their maximum intensity, being more prominent than in  $\gamma$  Cygni.

Of the better known arc lines of some of the metals which are prominent in  $\gamma$  Cygni, but very weak or lacking in  $\alpha$  Cygni, the following may be mentioned: the iron triplets ( $\lambda\lambda$  4045:98, 4063:76, 4071:91) and ( $\lambda\lambda$  4383:72, 4404:93, 4415:29); the manganese quartette ( $\lambda\lambda$  4030:92, 4033:22, 4034:64, 4035:80); the chromium triplet ( $\lambda\lambda$  4254:51, 4274:96, 4289:89); the aluminium pair ( $\lambda\lambda$  3944:16, 3961:67); the calcium line,  $\lambda$  4226:90; and the barium line,  $\lambda$  4554:21.

#### General Conclusions.

The investigation of the photographic spectrum of  $\gamma$  Cygni in its relation to other spectra has led to the following conclusions:—

- 1. The majority of the lines are due to metallic vapours, the enhanced lines and the arc lines being of about equal prominence.
  - 2. The temperature conditions are thus intermediate between those of Aldebaran

<sup>\* &#</sup>x27;Roy. Soc. Proc.,' vol. 64, p. 396.

212

(arc lines prominent, enhanced lines weak or absent) and those of a Cygni (enhanced lines prominent, arc lines weak or absent).

- 3. The enhanced lines of scandium, strontium, and titanium are better developed than in a Cygni, but those of iron, chromium, and magnesium are less conspicuous than in a Cygni.
- 4. The relative intensities of the metallic and proto-metallic lines are about the same as in the spectrum of the solar chromosphere, which, if anything, represents a slightly higher temperature.

Wave-lengths, Intensities, and Probable Origins of γ Cygni Lines, compared with those of δ Canis Majoris, the Chromosphere, and α Cygni.

|                                                                                                                                                                                                                              | (                                                                                                                                                                                                                               | $\gamma$ Cygni<br>Kensington).           |                                                                   | δ Canis m<br>(Harva                                             |                        | Chromos<br>(Kensing                                                                                                                                                                                                                                                            |                                  | a Cyg<br>(Kensing                                                        |                                                                       |                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------|
| λ.                                                                                                                                                                                                                           | Intensity. Max. =10.                                                                                                                                                                                                            | Probable<br>origin,                      | λ of<br>probable<br>origin.                                       | λ.                                                              | Intensity. Max. = 220. | λ.                                                                                                                                                                                                                                                                             | Intensity. Max. = 10.            | λ.                                                                       | Intensity. Max. =10.                                                  | Remarks.                                                                        |
| 3872 · 9 76 · 0 78 · 8 80 · 6 82 · 4 83 · 5 85 · 1 86 · 9 89 · 1 91 · 1 91 · 9 93 · 6 96 · 1 98 · 0 99 · 4 3900 · 7 03 · 2 03 · 8 05 · 6 06 · 7 08 · 7 09 · 8 11 · 0 12 · 4 13 · 6 14 · 5 16 · 1 16 · 7 20 · 7 22 · 9 26 · 2 | 5<br>3<br>7<br>1-2<br>3<br>1<br>2<br>3-4<br>5<br>1-2<br>4-5<br>3-4<br>3<br>4-5<br>4-5<br>2<br>4<br>2-3<br>2-3<br>2-3<br>3<br>2-4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4 | Fe F | $\begin{array}{c} 3872 \cdot 64 \\ 76 \cdot 19 \\ 78 \cdot 72 \\$ | 3872·7  78·5  83·2  89·1  99·9  3900·7  03·1  13·6  }   13·6  } | 7<br>5<br>             | 3872 · 6<br>76 · 1<br>78 · 7<br>80 · 8<br>82 · 5<br>83 · 4<br>—<br>87 · 2<br>89 · 1<br>91 · 4<br>92 · 2<br>94 · 0<br>95 · 7<br>98 · 0<br>99 · 2<br>3900 · 7<br>03 · 1<br>—<br>05 · 3<br>06 · 8<br>08 · 4<br>09 · 6<br>—<br>13 · 6<br>—<br>18 · 6<br>20 · 4<br>23 · 1<br>25 · 9 | 4<br>1-2<br>3<br>2<br>2<br>4<br> | 3872 · 4<br>78 · 7<br>80 · 5<br>82 · 2<br>84 · 5<br>86 · 3<br>89 · 1<br> | 3 -4 1-2 2 -1-2 - 2 10 2 1-2 - 5-6 2 - 4 2 1 - 1 4-5 3 <1 - 1 1 1 1 1 | ? double.  H\( \zeta \).  ? double.  ? fine double.  ? double.  Probably masked |
|                                                                                                                                                                                                                              |                                                                                                                                                                                                                                 |                                          | gene                                                              |                                                                 | _                      | Management                                                                                                                                                                                                                                                                     |                                  | $ \begin{cases} 30.4 \\ 32.1 \end{cases} $                               | 2-3                                                                   | in γ Cygni by broad K line.                                                     |

| zy.<br>ax.<br>10.                                                                                                                     | Inten-          |                         | ton).                                    | (Kensing                                                   |                        | δ Canis m<br>(Harva |                                                                                                      | γ Cygni<br>Kensington).                                                                                  | (                                                  |                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------|------------------------------------------|------------------------------------------------------------|------------------------|---------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------|
|                                                                                                                                       | sity. Max. =10. | λ.                      | Intensity. Max. =10.                     | λ.                                                         | Intensity. Max. = 220. | λ.                  | λ of probable origin.                                                                                | Probable origin.                                                                                         | Intensity. Max. =10.                               | λ.                                                        |
| 2 3                                                                                                                                   | 10<br>3         | 3933·8                  | 10                                       | 3933 ·8                                                    | 220                    | 3933 ·8             | 3933 .83                                                                                             | Ca                                                                                                       | 10                                                 | 3933 ·8                                                   |
| Possibly masked in $\gamma$ Cygni by                                                                                                  | 1<br>3<br>3     | 37 ·3<br>38 ·6<br>39 ·3 |                                          |                                                            |                        |                     |                                                                                                      |                                                                                                          |                                                    |                                                           |
|                                                                                                                                       | <1<br><1<br><1  | 41 ·8<br>42 ·6<br>44 ·2 | 1–2<br>5                                 | 41.9                                                       |                        | <br>44 ·1           | 41 ·03<br>42 ·59<br>44 ·16                                                                           | $\begin{array}{c} \mathbf{Fe} \\ \mathbf{Fe} \\ \mathbf{Al} \end{array}$                                 | $\begin{array}{c} 2 - 3 \\ 3 \\ 3 - 4 \end{array}$ | $\begin{array}{c} 41 & 0 \\ 42 & 5 \\ 44 & 1 \end{array}$ |
|                                                                                                                                       | 3               | 45 .2                   | 2                                        | 45.2                                                       | 3                      | -<br>45 · 2         | $   \left\{     \begin{array}{r}       44.94 \\       45.03 \\       45.26   \end{array}   \right. $ | $\left\{\begin{array}{c} p \\ Y \\ Fe \\ Fe \end{array}\right.$                                          | 6                                                  | 45 ·2                                                     |
| L                                                                                                                                     | 1 —             | 47 ·2                   |                                          |                                                            | <del>-</del>           |                     | 47 ·92<br>48 ·82                                                                                     | ? Ti                                                                                                     | 1                                                  | <del></del>                                               |
|                                                                                                                                       |                 |                         | 2-3                                      | 48 .6                                                      | 3                      | 49 0                | 48 .93                                                                                               | { Fe                                                                                                     | 2-3                                                | 48 .9                                                     |
|                                                                                                                                       |                 |                         | 2-3<br>1                                 | 50 ·3<br>51 ·8                                             | _                      |                     | 50 ·16<br>51 ·31                                                                                     | Fe<br>Fe                                                                                                 | 4<br>4                                             | 50 ·1<br>51 ·3                                            |
| solar lines                                                                                                                           | 1-2             | 52 ·1                   | 3-4                                      | 52 ·3                                                      | 4                      | 53.0                | 52 ·75<br>52 ·85<br>53 ·04<br>53 ·12                                                                 | $\begin{cases} & \text{Fe} \\ & \text{Fe} \\ & \text{Mn} \\ & \text{Co} \end{cases}$                     | $\left. \right\} 6$                                | 52 ·7<br>to<br>53 ·3                                      |
| given.                                                                                                                                | <1              | 54 •4                   |                                          |                                                            |                        | · _                 | 53 ·30<br>55 ·48                                                                                     | Fe Cr<br>Fe                                                                                              | 1.                                                 | 55 <b>·</b> 5                                             |
| { Probably compound line.                                                                                                             | 1.              | 56.6                    | 4                                        | 56 •6                                                      | 2                      | <b>56.6</b>         | 56·48<br>56·60                                                                                       | $\left\{\begin{array}{c} \text{Co Ti} \\ \text{Fe} \end{array}\right.$                                   | 6                                                  | 56 .6                                                     |
| 1                                                                                                                                     | .1              | 59.0                    | 4                                        | 58 .2                                                      | 2                      | 58 • 4              | 56·82<br>58·36                                                                                       | $\begin{array}{c} \text{Fe} \\ \text{Ti} \end{array}$                                                    | 4-5                                                | 58 4                                                      |
| -                                                                                                                                     | 2               | 61.6                    | $\frac{-6}{1}$                           | 61 ·7<br>63 ·3                                             | 3                      | 61 .6               | 61 ·67<br>63 ·25                                                                                     | Al<br>Fe                                                                                                 | $\begin{bmatrix} 1 \\ 5-6 \\ 2 \end{bmatrix}$      | 60 ·0<br>61 ·7<br>63 ·3                                   |
|                                                                                                                                       | 1<br>1          | 64 ·9<br>66 ·4          |                                          |                                                            |                        | nements<br>sommer   |                                                                                                      |                                                                                                          | *******                                            |                                                           |
|                                                                                                                                       | 10<br>10        | 68 ·6<br>70 ·2          | 10<br>10                                 | $\left\{\begin{array}{cc} 68.6 \\ 70.2 \end{array}\right $ | } 180                  | 68 ·6<br>70 ·2      | 68 · 63<br>70 · 18                                                                                   | Ca<br>II                                                                                                 | }10                                                | 68 ·6<br>70 ·2                                            |
| $\begin{cases} \text{Possibly masked} \\ \text{in } \gamma \text{ Cygni by} \\ \text{broad H line of} \\ \text{calcium.} \end{cases}$ | 1               | 71 •4                   |                                          |                                                            |                        |                     |                                                                                                      |                                                                                                          |                                                    | Nacional State                                            |
| 4                                                                                                                                     | 3-4             | 74 0                    | 2                                        | 73 ·5                                                      |                        | } -                 | 73 ·70<br>73 ·80<br>73 ·86                                                                           | $\left\{egin{array}{c} 	ext{Ni Zr} \ 	ext{Fe} \ 	ext{Ca $p$ V} \end{array} ight.$                        | 4                                                  | 73 ·8                                                     |
| -                                                                                                                                     |                 |                         |                                          |                                                            |                        | ,<br>)              | 74 .90                                                                                               | Co Fe                                                                                                    | 4                                                  | 74 .9                                                     |
| -                                                                                                                                     |                 |                         | 1                                        | 76 · 7                                                     | 2                      | } 76.8              | 76 ·77<br>76 ·84                                                                                     | $\left\{egin{array}{c} 	ext{Fe} \ 	ext{Cr} \end{array} ight.$                                            | 3-4                                                | 76.8                                                      |
| _                                                                                                                                     | 1               | 77 ·3                   | $\frac{2}{\mathrm{Tr}}$                  | 77 ·8<br>78 ·1                                             |                        | TOTAL ST            | 77 .89                                                                                               | Fe -                                                                                                     | 2-3<br>2                                           | 77 ·9<br>78 ·6                                            |
|                                                                                                                                       | 3               | 79.6                    | 1                                        | 79 .3                                                      |                        | } -                 | 79 ·66<br>79 ·78                                                                                     | $\left\{ egin{array}{c} p & \operatorname{Cr} \operatorname{Co} \\ \operatorname{Fe} \end{array}  ight.$ | 3                                                  | 79 ·7                                                     |
| 1                                                                                                                                     | 2-3             | 82 .0                   | 6                                        | 82 .0                                                      | 6                      | 82.0                | 81 ·92<br>84 ·06                                                                                     | Ti<br>Cr                                                                                                 | 7                                                  | 81 .9                                                     |
|                                                                                                                                       |                 | enerosa.                | $\begin{vmatrix} 1 \\ 1-2 \end{vmatrix}$ | 83 ·8                                                      |                        | } _                 | $84.11 \\ 86.32$                                                                                     | Fe<br>Fe                                                                                                 | 3-4                                                | 84.0                                                      |
|                                                                                                                                       |                 |                         | $\frac{1}{1}$                            | 88 ·3                                                      | 3                      | 87 .0               | 87 ·24                                                                                               | ? Mn                                                                                                     | 3                                                  | 87 ·3<br>88 ·6                                            |
|                                                                                                                                       |                 | erenake                 | 2-3                                      | 89 .9                                                      |                        | } _                 | 89 ·91<br>90 ·01                                                                                     | $egin{cases} \mathbf{Ti} \\ \mathbf{Fe} \end{cases}$                                                     | 4                                                  | 89 ·9                                                     |
| -                                                                                                                                     |                 |                         | 3                                        | 91 ·3                                                      | 2                      | 91 .6               | 91 ·33                                                                                               | Cr Zr                                                                                                    | 3-4<br>1-2                                         | 91 ·1<br>92 ·1                                            |

|                         |        |                   |                      | α Cygr<br>(Kensing)       |                      | Chromosp<br>(Kensingt |                        | δ Canis m<br>(Harvaı |           |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | γ Cygni<br>ensington).                 | K  | (                    |                                 |
|-------------------------|--------|-------------------|----------------------|---------------------------|----------------------|-----------------------|------------------------|----------------------|-----------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----|----------------------|---------------------------------|
| Remark                  |        |                   | Intensity. Max. =10. | λ.                        | Intensity. Max. =10. | λ.                    | Intensity. Max. = 220. | λ.                   | e         | λ of probable origin.                                                                                  | Annual desiration of the second of the secon | Probable origin.                       |    | Intensity. Max. =10. | λ.                              |
|                         |        |                   | <1                   | 3993 ·7                   |                      |                       |                        |                      |           | ()-in-                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | -  | 2                    | 93 ·7                           |
|                         |        |                   | <1                   | 95 .7                     | 3-4                  | 3995 ·2               | 3                      | 3995 ·5              |           | 3995 ·46                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Co                                     |    | 5                    | 95 .2                           |
|                         |        |                   | 1                    | 97 ·3                     | 3                    | 97 .7                 | ] 6                    | 97 .6                |           | $\begin{cases} 97.55 \end{cases}$                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ${ m Fe}$                              |    | 5                    | 97 ·3                           |
|                         |        |                   | <u> </u>             | 4000 •0                   | 4<br>1-2             | 98 ·8<br>4000 ·4      | ]                      | 98 ·8                | Э         | 98 .79                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ti                                     |    | 5<br>3               | 98 ·9<br>00 ·1                  |
|                         |        |                   | T.                   |                           | J.**2/               | 3000 B                |                        |                      | 1         | 4001 .81                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fe                                     |    | $^{3-4}$             | 01.8                            |
|                         |        |                   | 3-4                  | 02 .7                     | 1                    | 03 ·3                 | 3                      | 4003 .0              |           |                                                                                                        | ĺ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |    | 3                    | 03.0                            |
|                         |        | -                 | <del></del>          | 04 .9                     |                      | Section 2             |                        | E-100                | L         | 03 .91                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ce Fe Ti                               |    | 2                    | 04.0                            |
|                         |        |                   | 2-3                  | 05.5                      | 5                    | 05 4                  | 4                      | 05 .3                | L         | 05.41                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\mathbf{Fe}$                          |    | 8                    | 05 4                            |
|                         |        | and the same      | 1                    | 09 .4                     | 1-2<br>2-3           | 06 .8                 | 1                      | <del>0</del> 9 ·4    | e         | 09 .86                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fe                                     |    | $\frac{1}{2-3}$      | 06 .8                           |
|                         |        | -                 | 1.<br>4.             | 12.5                      | 5-6                  | 12.5                  | 3                      | 12.6                 |           | 12.54                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | p Ti                                   |    | 2-5<br>5             | 12.5                            |
|                         |        |                   | <1                   | 14.1                      | 3                    | 14 · 5                |                        |                      |           | 14.42                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ${ m Fe}$                              |    | 2                    | 14.4                            |
|                         |        | -                 | 2-3                  | 15.7                      |                      |                       | 3                      | 14 ·7                | 3         | 14 .68                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fe                                     |    | $\frac{3-4}{2}$      | 14·8<br>15·8                    |
|                         |        |                   | <1                   | 17.2                      | 2                    | 17.5                  | *****                  |                      | ք   Ղ     | 17.24                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\mathbf{U}\mathbf{n}$                 | 1  | 3                    | 17 ·2                           |
|                         |        |                   |                      | ., 2                      | 1                    | 18.5                  | 2                      | 18 4                 |           | 17 ·31<br>18 ·23                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fe<br>Mn                               | 1  | 3-4                  | 18.1                            |
|                         |        | -                 |                      |                           | <1                   | 20.6                  | 2                      | 1.0 4                |           | $   \left\{     \begin{array}{c}       18.23 \\       18.27 \\       20.55     \end{array}   \right. $ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a                                      | 1  | 1-2                  | 20.6                            |
|                         |        |                   |                      |                           |                      | 21.6                  |                        | 99.0                 |           | 20 .64                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 1  |                      |                                 |
|                         |        |                   | $\frac{-}{1-2}$      | 23 .6                     | $\frac{3}{1}$        | 23 1                  | 2                      | 22 .0                | 5         | 22 .02                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fe                                     |    | $\frac{3-4}{3-4}$    | $\frac{22 \cdot 0}{23 \cdot 2}$ |
|                         |        |                   | 3                    | 24.6                      | 3                    | 24 .7                 | 5                      | 24 .8                |           | $24.73 \\ 24.88$                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ti<br>Fe                               | {  | 7                    | 24:8                            |
|                         |        |                   | $\frac{1}{3}$        | $25 \cdot 2$ $28 \cdot 5$ | 2-3                  | 28.5                  | $\frac{-}{2}$          | 28 .5                | .         | 28 50                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | p Ti                                   | '  | 1<br>4               | 25.7 $28.5$                     |
|                         |        |                   |                      |                           |                      |                       | Romas                  |                      | 0         | 29 .80                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fe                                     |    | 2                    | 29 .8                           |
|                         |        |                   | $\frac{1}{2-3}$      | $\frac{30.9}{33.2}$       | 5<br>3-4             | 30 ·9<br>33 ·2        | $\frac{5}{2}$          | 30 ·8<br>33 ·2       |           | $30.92 \\ 33.22$                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mn<br>Mn                               |    | $\frac{5}{4}$        | 30 ·8<br>33 ·2                  |
|                         |        |                   | <1                   | 34.6                      | 3-4                  | 34 .6                 | 1                      | $\frac{36.2}{34.6}$  |           | 34.64                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mn                                     |    | 3                    | 34.6                            |
|                         |        |                   | 2                    | 35 ·8                     | 1                    | 35 .9                 | 1                      | 35.8                 |           | 35.80                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mn                                     | {  | 2                    | 35 ·9                           |
|                         |        |                   |                      |                           | 1                    | 37 .7                 | 1                      | 37 ·2                | , ]       | 35.80                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | may yet at a                           | 1  | 1                    | 37 ·3                           |
| lose doubl<br>ponents m |        | 5                 | 1-2<br><1            | 38 ·3<br>40 ·4            | 4                    | 40.8                  | 2                      | 40.8                 | э         | 40 79                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fe                                     |    | 2-3                  | 40.8                            |
| into each               |        | 1                 | <1                   | 41 .9                     |                      |                       |                        |                      |           | 41 .53                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mn                                     |    | 5                    | 41 .5                           |
| Probably o              | ( P.,. | 1                 |                      |                           | 1                    | 43 .4                 | -                      | ********             | 1 -       | 43 ·05<br>44 ·06                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ? La<br>Fe                             | ١. | 1-2                  | 43 .0                           |
| double.                 | { do   | {                 | 1-2                  | 44 4                      | 1                    | 44 .4                 | ******                 | - Totalija           |           | 44 .77                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fe                                     | 1  | 1                    | 44.4                            |
|                         | •      |                   | 3-4                  | 46.0                      | 7                    | 45 .9                 | 4.                     | 45 .9                | 8         | 45 ·98<br>47 ·46                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fe<br>Fe                               | 1  | $\frac{8}{1}$        | $\frac{46.0}{47.5}$             |
|                         |        |                   | 3                    | 48.9                      | 3                    | 49 .0                 | 1                      | 48 .9                | $2\mid 1$ | 48 ·82<br>48 ·91                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | p Fe<br>Mn Cr                          | 1  | 4                    | 48 .9                           |
|                         |        |                   |                      |                           | 1                    | 51 .0                 | 1                      | 50 .8                | ۱ ا       | 40 91                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mil Or                                 |    | 2                    | 50.6                            |
|                         |        |                   | 2                    | 52 ·3                     | noncombar.           |                       | 1.                     | 52 .6                |           | $\left\{\begin{array}{cc} 52.45 \\ 52.65 \end{array}\right.$                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\mathbf{Fe}$                          |    | 2                    | 52 ·5                           |
|                         |        | The second second | 3                    | 53 •9                     | 3                    | 53.8                  | 2                      | 53.8                 | 8         | § 53·98                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $p \stackrel{\mathrm{Ti}}{\mathrm{V}}$ | 4  | 4-5                  | 54.0                            |
|                         |        |                   |                      |                           | 2                    | 55 ·6                 |                        |                      |           | 55 ·19<br>55 ·63                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | p Ti<br>p Fe                           | -  | 2                    | 55 ·2                           |
|                         | 2      | 1                 |                      | EH -0                     | 1.0                  |                       |                        | ******               | "         |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |    | 2                    | 56.2                            |
| Double.                 | L P    |                   | 1                    | 57 ·6                     | 1-2 $1-2$            | 57 ·4<br>58 ·2        | Property Co.           | et the same          | . 1       | 57 · 50<br>58 · 37                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fe<br>Co Fe                            |    | $\left \right _{2}$  | 57 ·6<br>to                     |
|                         | ]. ~   |                   |                      |                           | 1-2                  | 59 ·2                 | 1                      | 59 .0                | 2         | 58.92                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fe Cr                                  |    | IJ                   | 58.8                            |
|                         |        |                   |                      |                           | 1-2                  | 61 ·2                 |                        |                      | 4         | 61 .24                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ? Ni                                   |    | 2                    | 61 3                            |

|                                                                                                                                                                                                                                                                                                                  | (                                                                                                                                                                                              | γ Cygni<br>Kensington).                                                                                                              |                                                          | δ Canis m<br>(Harva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | Chromos<br>(Kensing                                                                                                                         |                                          | a Cyg<br>(Kensing                                     | ni<br>ton).                       |                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------|
| λ.                                                                                                                                                                                                                                                                                                               | Intensity. Max. =10.                                                                                                                                                                           | Probable<br>origin.                                                                                                                  | λ of probable origin.                                    | λ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Intensity. Max. = 220. | λ.                                                                                                                                          | Intensity. Max. =10.                     | λ.                                                    | Intensity. Max. =10.              | Remarks.                                                                                                       |
| 4063 ·8<br>65 ·2<br>67 ·3<br>70 ·9<br>71 ·9<br>73 ·7<br>75 ·6<br>77 ·9<br>79 ·4<br>80 ·4<br>82 ·8<br>83 ·7<br>85 ·3<br>86 ·9<br>90 ·5<br>92 ·6<br>94 ·6<br>96 ·2<br>98 ·2<br>91 ·9<br>91 ·9<br>91 ·9<br>92 ·6<br>92 ·6<br>93 ·6<br>94 ·6<br>96 ·2<br>96 ·2<br>96 ·2<br>96 ·2<br>96 ·2<br>96 ·6<br>97 ·8<br>99 ·9 |                                                                                                                                                                                                | origin.  Fe  Mn Ti  Fe  Fe  P Ni  Fe  Fe  P Sr  Fe  Mn  Fe  Mn  Fe  Mn Y  Fe  P La  Fe  Co Mn  V  Fe  Fe  Fe  Fe  Fe  Fe  Fe  Fe  Fe |                                                          | \\ \begin{align*} \lambda \text{.67 \cdot 0} \\ \frac{71 \cdot 9}{75 \cdot 0} \\ \frac{71 \cdot 9}{75 \cdot 0} \\ \frac{77 \cdot 9}{75 \cdot 0} \\ \frac{83 \cdot 8}{87 \cdot 2} \\ \frac{90 \cdot 2}{98 \cdot 5} \\ \frac{4101 \cdot 8}{4101 \cdot 8} \\ \frac{100 \cdot 6}{100 \cdot 4} \\ \frac{100 \cdot 6}{100 \cdot 4} \\ \frac{100 \cdot 6}{100 \cdot 4} \\ \frac{100 \cdot 6}{100 \cdot 6} \\ \frac{1000 \cdot 6}{100 \cdot 6} \\ \frac{100000 \cdot 6}{100 \cdot 6} \\ \frac{1000 \cdot 6}{100 \cdot 6} \\ \frac{1000 \cdot 6}{100 \cdot 6} \\ 1000000000000000000000000000000000000 | Max.                   | 4063 ·7  -  67 ·3  -  71 ·8  73 ·9  75 ·3  77 ·9  -  80 ·3  83 ·1  84 ·0  85 ·0  86 ·7  -  92 ·5  -  96 ·2  98 ·2  4101 ·9  -  07 ·6  09 ·9 | Max.                                     | 4063 · 8                                              |                                   | { Probably close double. } { Rather broad, possibly double. } { Merging into H <sub>δ</sub> . H <sub>δ</sub> . |
| 11 · 5<br>13 · 5<br>15 · 4<br>17 · 5<br>18 · 9<br>20 · 3<br>22 · 0<br>23 · 0<br>23 · 0<br>25 · 0<br>26 · 2<br>28 · 0<br>29 · 2<br>30 · 6<br>—<br>32 · 2                                                                                                                                                          | 4<br>3<br>3-4<br>1<br>5<br>3<br>1-2<br>4<br>4<br>2<br>2<br>2<br>5<br>6<br>5<br>5<br>5<br>7<br>6<br>7<br>7<br>7<br>8<br>7<br>8<br>7<br>8<br>8<br>7<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>8<br>8 |                                                                                                                                      | $ \begin{array}{c}                                     $ | 11 · 0 13 · 1 14 · 7  18 · 9 22 · 8 22 · 8  28 · 1 28 · 5 32 · 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ? 1 1 1 4 3 } 5 5 3    | 11 · 9 23 · 0 28 · 0 29 · 6 32 · 4                                                                                                          | 3 -4 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 | $\left\{\begin{array}{c} 11 \cdot 2 \\ 13 \cdot 3 \\$ | 2 <1 <1 1 3-4 1-2 1 5-6 2-3 5-6 1 | αCygniline4128·1<br>undoubtedly<br>due to silicium.                                                            |

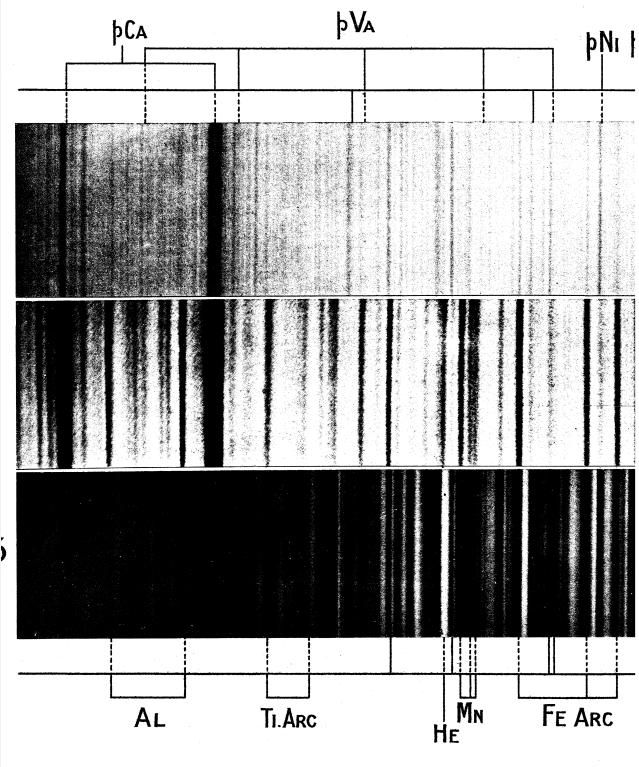
|                  | (1                                     | γ Cygni<br>Kensington).                                                |                                                                                                      | δ Canis m<br>(Harvar |                                         | Chromos<br>(Kensing |                       | a Cyg<br>(Kensing                       |                                             |                                                       |
|------------------|----------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------|---------------------|-----------------------|-----------------------------------------|---------------------------------------------|-------------------------------------------------------|
| λ.               | Intensity. Max. == 10.                 | Probable origin.                                                       | λ of<br>probable<br>origin.                                                                          | λ.                   | Intensity. Max. = 220.                  | λ.                  | Intensity. Max. = 10. | λ.                                      | Intensity. Max. =10.                        | Remarks.                                              |
|                  |                                        |                                                                        |                                                                                                      |                      |                                         | -                   |                       |                                         |                                             | ∫ Hazy, probably                                      |
| 4134.8           | 3-4                                    | Fe                                                                     | 4134 .84                                                                                             | 4131.8               | 3                                       | 4134.8              | 3                     | Name of                                 |                                             | double.                                               |
| 36.9             | 5                                      | $\left\{ egin{array}{c} \mathbf{Fe} \\ \mathbf{Fe} \end{array}  ight.$ | 36 ·68<br>37 ·16                                                                                     | )                    | 100km                                   | gart salaya         | *****                 |                                         |                                             |                                                       |
|                  |                                        | -                                                                      |                                                                                                      | 37.4                 | 3                                       | 37 .5               | 3                     |                                         | ***************************************     |                                                       |
| 37 .9            | 5 3                                    | $_{ m Fe}^{ m Fe}$                                                     | 37 .81                                                                                               | ]                    | Benne -                                 | 40 1                | -                     | 4138 4                                  | 1                                           |                                                       |
| 40.1             | 1                                      | f Fe                                                                   | 40 ·09<br>42 ·03                                                                                     | 1                    |                                         | 40 ·1               | 1                     | Manager 1                               |                                             |                                                       |
| 42 .3            | 3                                      | ( Cr                                                                   | 42.33                                                                                                | ]}                   |                                         | 42 ·3               | 1                     | e.uman-                                 | L-Mariena.                                  |                                                       |
| 43 .8            | 8                                      | $\left\{egin{array}{c} \mathbf{Fe} \\ \mathbf{Fe} \end{array} ight.$   | 43 · 57<br>44 · 04                                                                                   | 43.9                 | 5                                       | 43 .8               | 5-6                   | 43 .9                                   | 1-2                                         |                                                       |
| 46.0             | 2-3                                    | Fe                                                                     | 46 .53                                                                                               | J                    |                                         | 46 .0               | 1                     | 46 .0                                   | 2                                           |                                                       |
| 47 .7            | 3                                      | $\left\{ egin{array}{c} 	ext{Mn} \\ 	ext{Fe} \end{array}  ight.$       | 47 ·65<br>47 ·84                                                                                     | } _                  |                                         | 47 .5               | 1                     | *************************************** |                                             |                                                       |
| 49 .4            | 5-6                                    | Fe Fe                                                                  | 49 .53                                                                                               | 49 .5                | 2                                       | 49 •4               | 3-4                   | 49 .7                                   | <1                                          | P double.                                             |
| 50 4             | 1                                      |                                                                        |                                                                                                      |                      |                                         | FO.1                |                       | JOHN CO.                                |                                             |                                                       |
| 52 ·3            | 3                                      | Fe                                                                     | 52 .34                                                                                               |                      | -                                       | 52 ·1               | 2                     | garing                                  |                                             | (Broad, probably                                      |
| <b>54 ·</b> 5    | 5                                      | ${f Fe}$                                                               | $   \left\{     \begin{array}{r}       54.07 \\       54.67 \\       54.98   \end{array}   \right. $ | 51.0                 | 2                                       | 51.8                | 2-3                   | NEW PLAN                                | ***************************************     | compounded of<br>the three solar-<br>Fe lines.        |
| 56 ·7            | 6                                      | e.<br>Manusus                                                          | Promise.                                                                                             | 56 .7                | 2                                       | 56 •5               | 3                     | was tigs                                | (framework)                                 | Probably identical with unknown solar line 4156 47.   |
| <b>57</b> ·9     | 1                                      | Fe                                                                     | 57 .95                                                                                               | -                    |                                         | 57 <b>·</b> 8       | 1                     |                                         |                                             | (Un = strong solar                                    |
| 59 •2            | 3                                      | $\left\{ egin{array}{c} 	ext{Fe} \ 	ext{Un} \end{array}  ight.$        | { 58 ⋅96 59 ⋅35                                                                                      | } -                  | *************************************** | 58 ·9               | 1                     | Manager .                               |                                             | line, to which ROWLAND assigns no origin              |
| 60.5             | 3                                      | water on to                                                            |                                                                                                      |                      |                                         |                     |                       |                                         |                                             | 220000000000000000000000000000000000000               |
| 61 .7            | 6-7                                    | p Ti                                                                   | 61 .68                                                                                               | 61.7                 | 3                                       | 61 · 7              | 3                     | 61 ·7<br>63 ·0                          | $\begin{array}{c c} 1-2 \\ < 1 \end{array}$ |                                                       |
| 63 .8            | 5-6                                    | p Ti                                                                   | 63 .82                                                                                               | 63 .9                | 2                                       | 63 •8               | 4.                    | 63.8                                    | 3-1                                         |                                                       |
| 65 · 5           | 3 4 3-4                                | Fe                                                                     | 65 • 55                                                                                              | 67 · 5               | 1                                       | 67 • 5              | 2-3                   | 67 .6                                   | 1                                           | Probably identical with strong solar line 4167 44, to |
|                  |                                        |                                                                        |                                                                                                      |                      | -                                       |                     |                       | 69 -8                                   | <1                                          | which Row-<br>LAND assigns<br>no origin.              |
| 71 .2            | 1-2                                    | ∫ Fe                                                                   | 71 .07                                                                                               | 1                    | phore the same                          |                     |                       | 00 0                                    | 1                                           |                                                       |
|                  |                                        | 1 p Ti                                                                 | 71 .21                                                                                               | ] _                  |                                         | 72 ·1               | 3-4                   | 72 .0                                   | 2-3                                         | -                                                     |
| 72 ·1            | 3-4                                    | p  Ti $p  Fe$                                                          | $72.07 \\ 73.52$                                                                                     | 72.9                 | 10                                      |                     | 1                     | 73 . 5                                  | 6-7                                         | Probably close                                        |
| 73 .6            | 4-5                                    | Ti p Ti                                                                | 73 .70                                                                                               | 73.6                 | $\left.\right\} 13$                     | 73 · 5              | 4-5                   |                                         |                                             | double.                                               |
| 75 ·4<br>77 ·7   | $\begin{vmatrix} 1 \\ 4 \end{vmatrix}$ | $p \overline{Y}$                                                       | 77 .75                                                                                               | 77 .8                | 3                                       | 77 ·3               | 5                     | 77 .8                                   | 2-3                                         |                                                       |
| 79 .0            | 5                                      | p Fe                                                                   | 78 95                                                                                                | 79 .5                | 4                                       | 79 .0               | 4-5                   | 79 .0                                   | 6-7                                         |                                                       |
| 81 ·9<br>84 ·5   | 4-5<br>5                               | p Ti                                                                   | 81 ·92<br>84 ·40                                                                                     | 82 ·0<br>85 ·0       | $\frac{1}{2}$                           | 81 ·9<br>84 ·6      | 3<br>2-3              | 81 ·8<br>85 ·0                          | <1 < 1 < 1                                  | ? double.                                             |
| 87 ·2<br>87 ·8   | } 6                                    | Fe Fe                                                                  | 87 ·20<br>87 ·94                                                                                     | } 87.6               | 4.                                      | 87 .6               | 4-5                   | 88 .0                                   | 2                                           | Close double.                                         |
| 90 .7            | 1 5                                    | · ·                                                                    | 91 .59                                                                                               | 1 01.0               | 3                                       | 91.7                | 2_4                   | 92.0                                    | 1                                           |                                                       |
| 91.7             | 5                                      | { Fe                                                                   | 91 .84                                                                                               | 91.8                 | 3 .                                     | 91.7                | 3-4                   | 92.0                                    | 1                                           |                                                       |
| 93 · 4<br>95 · 5 | 1 4                                    | Fe                                                                     | 95 .49                                                                                               | -                    |                                         | 95 .5               | 1                     |                                         |                                             |                                                       |
|                  |                                        |                                                                        |                                                                                                      |                      |                                         |                     |                       |                                         |                                             |                                                       |

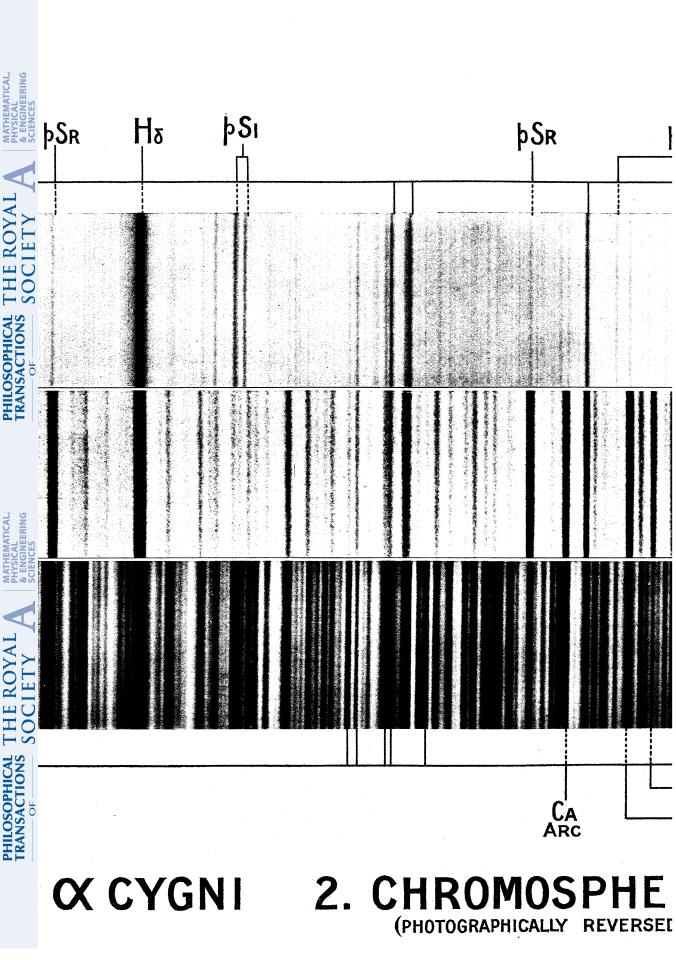
Wave-lengths, Intensities, and Probable Origins of γ Cygni Lines, compared with those of  $\delta$  Canis Majoris, the Chromosphere, and  $\alpha$  Cygni—continued.

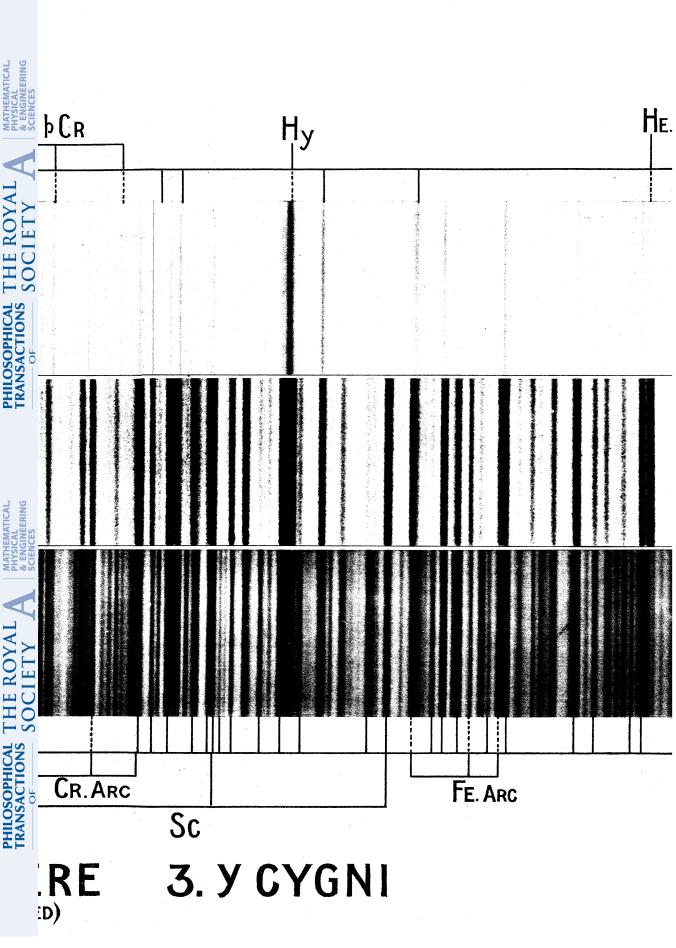
|                                             | (                                                      | γ<br>Kei | Cygni<br>nsington).                                                         |                                 | 3 | Canis m<br>(Harvai                          |                                         |   | hromosj<br>Kensing              |                                          | (1  | α Cyg<br>Kensing                            | ni<br>ton).           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------|--------------------------------------------------------|----------|-----------------------------------------------------------------------------|---------------------------------|---|---------------------------------------------|-----------------------------------------|---|---------------------------------|------------------------------------------|-----|---------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| λ.                                          | Intensity. Max. =10.                                   |          | Probable origin.                                                            | λ of<br>probable<br>origin.     |   | λ.                                          | Intensity. Max. = 220.                  |   | λ.                              | Intensity. Max. =10.                     | 400 | λ.                                          | Intensity. Max. = 10. | Remarks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4196 •4                                     | 4                                                      |          | Fe                                                                          | 4196 :37                        |   | 4196 .8                                     | 3                                       |   | 4196 •4                         | 2-3                                      |     |                                             |                       | ARREST CONTROL OF THE PROPERTY |
| 98 •9                                       | 7                                                      | {        | Fe<br>Fe                                                                    | 98 ·49<br>98 ·80                | } | 98.5                                        | 4                                       |   | 98 ·8                           | 4                                        | 4   | 1198 •5                                     | 1                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4201 ·1<br>02 ·2                            | $\begin{array}{ c c }\hline 1\\5 \end{array}$          | L        | Fe<br>Fe<br>Fe                                                              | 99 · 27<br>4201 · 09<br>02 · 20 | ز | 4202 ·2                                     | 3                                       |   | <br>4202 <b>·</b> 2             | 3                                        | 4   | <u> </u>                                    | 1                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 03 · 9                                      | 1                                                      | 1        | ? Fe                                                                        | 04 ·10                          |   |                                             |                                         |   |                                 |                                          | _   | -                                           |                       | 1 A D D D D D D D D D D D D D D D D D D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 05.0                                        | 5-6                                                    | 5        | $egin{array}{c} \operatorname{F} \ \mathbf{X} \ p \ \mathbf{Y} \end{array}$ | 04·16<br>04·89                  |   | -                                           |                                         |   |                                 | Participal<br>Address A                  |     |                                             | TO COLUMN             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                             |                                                        | ĺ        | $p   \mathrm{V}$                                                            | 05 · 24                         | 1 | 05 ·3                                       | 3                                       |   | 05 ·1                           | 3                                        |     | 05 ·2                                       | 1                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 06.9                                        | 3                                                      |          | Fe                                                                          | 1 07 ⋅29                        | } | 06 ·9                                       | 2                                       |   | 07 ·1                           | 1                                        |     | ******                                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $09 \cdot 2$ $10 \cdot 5$                   | 4-5<br>3                                               |          | ? Zr<br>Fe                                                                  | 09·14<br>10·49                  |   | $08.8 \\ 10.5$                              | $egin{array}{c} 2 \ 2 \end{array}$      |   | 09.6                            | $^{2-3}$                                 |     | 10.8                                        | <1                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\begin{array}{c} 12.0 \\ 13.7 \end{array}$ | $\begin{vmatrix} 3 \\ 2 \end{vmatrix}$                 |          | $^{ m P}{f Zr}$                                                             | 12 ·05<br>13 ·81                |   | 12 ·1                                       | 1                                       |   | 12 .4                           | 1                                        |     |                                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15.7                                        | 9                                                      |          | $p \operatorname{Sr}$                                                       | 15.70                           |   | 15 .7                                       | 5                                       |   | 15 .7                           | 10                                       |     | 15 .7                                       | 2                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $17.2 \\ 19.5$                              | 3-4                                                    |          | $\overline{\mathbf{F}}_{\mathbf{e}}$                                        | 19.52                           |   | $\begin{array}{c} 17.6 \\ 19.6 \end{array}$ | 1 1                                     |   | 17 ·0<br>19 ·4                  | $\stackrel{<1}{\stackrel{2}{}}$          |     |                                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $20.4 \\ 22.4$                              | 3<br>5-6                                               |          | Fe<br>Fe                                                                    | 20.51                           |   |                                             | <u>-</u>                                |   | $\frac{-}{22}\cdot 4$           | 3                                        |     | $\frac{-}{22} \cdot 2$                      | <br><1                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $24 \cdot 2$                                | 3                                                      |          | $_{ m Fe}^{ m re}$                                                          | 22 ·38<br>24 ·34                | ι | $22 \cdot 4 \\ 24 \cdot 7$                  | 1                                       | { | -                               |                                          |     | -                                           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25.2 $26.9$                                 | 8                                                      |          | $\overline{\text{Ca}}$                                                      | 26.90                           | 5 | 27.0                                        | 5                                       | ſ | <del>26</del> ·9                | $\frac{-}{7}$                            |     | $\begin{array}{c} 24.9 \\ 27.2 \end{array}$ | 1<br>1                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 29 .8                                       | 3                                                      | {        | $\mathbf{Fe}$                                                               | 29 .68                          | } |                                             |                                         |   | 29 ·4                           | <1                                       |     | Militaria                                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ******                                      |                                                        | J        | Fe                                                                          | 29 .93                          | J |                                             |                                         |   | -                               |                                          |     | 30 .7                                       | 1                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\frac{32 \cdot 2}{33 \cdot 3}$             | 1-2<br>7-8                                             |          | <i>p</i> Fe                                                                 | 33 ·33                          |   | 33 .6                                       | 3                                       |   | 33 ·3                           | <br>6-7                                  |     | $32 \cdot 1$ $33 \cdot 3$                   | <1<br>8               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 36.1                                        | 5-6                                                    |          | $^{-}$ Fe                                                                   | 36 ·11                          |   | 36.0                                        | 2                                       |   | 35.9                            | 4                                        |     | 35.7                                        | 1                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 39.0                                        | 5                                                      |          | $\overline{\mathbf{Fe}}$                                                    | 38 .97                          |   | ******                                      |                                         |   | 38.0                            | 1-2                                      |     | $37.6 \\ 39.2$                              | <1<br><1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 40.1                                        | 3                                                      | {        | $rac{\mathbf{M}\mathbf{n}}{\mathbf{F}\mathbf{e}}$                          | 39 ·89<br>40 ·04                | } | 40 .0                                       | 3                                       |   | 40 .3                           | 1                                        |     | 40.6                                        | <1                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 42 .6                                       | 5                                                      | ١        | p Cr                                                                        | 42 .62                          | ر | 42.5                                        | 1                                       |   | 42.8                            | 2-3                                      |     | 42.6                                        | 3-4                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $45.5 \\ 47.0$                              | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |          | Fe<br>Sc                                                                    | 45 ·42<br>47 ·00                |   | 47 ·3                                       | 4                                       |   | $45.0 \\ 47.0$                  | 1-2 $7$                                  |     | $\begin{array}{c} 45.0 \\ 47.2 \end{array}$ | $\frac{1}{3}$         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 50.9                                        | 4.                                                     |          | Fe<br>Fe                                                                    | 50 ·29<br>50 ·95                |   | 51.0                                        | $\frac{-}{2}$                           | } | 50 ·4                           | 4–5                                      | {   | <del></del> 51 ·0                           | 1                     | TOTAL  |
| 52.5                                        | 2-3                                                    |          | ? Co                                                                        | 52 .47                          |   | <b>53</b> ·0                                | P                                       | J |                                 | _                                        | ·   | <b>5</b> 3 <b>·</b> 1                       | 2                     | Possibly double                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 54.5 $56.2$                                 | 4 3                                                    |          | Cr                                                                          | 54.51                           |   | 54·5<br>—                                   | 2                                       |   | 54 ·5<br>55 ·6                  | 6 $1-2$                                  |     | 54 · 5                                      | 1-2                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 58 ·4<br>60 ·6                              | 6                                                      |          | $_{\mathbf{Fe}}^{\mathbf{Fe}}$                                              | 58 ·48<br>60 ·64                |   | 58 ·7<br>60 ·5                              | $egin{array}{c} 2 \ 2 \end{array}$      |   | $\frac{58 \cdot 2}{60 \cdot 6}$ | $egin{array}{c} 2 \ 4 \end{array}$       |     | 58 ·6<br>60 ·7                              | $\frac{3}{<1}$        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $62 \cdot 1$                                | 3                                                      |          | $p  \operatorname{Cr}$                                                      |                                 |   | 62.2                                        | 1                                       |   | 61 .6                           | 1-2                                      |     | 62.2                                        | 3                     | The state of the s |
| $64.2 \\ 65.1$                              | 1                                                      |          | $_{ m Fe}^{ m Fe}$                                                          | 64 · 37<br>64 · 90              |   |                                             |                                         |   | $64.6 \\ 65.5$                  | 1-2<br><1                                |     | 64 .4                                       | <1                    | 7 A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 67 ·3<br>69 ·5                              | $\begin{array}{c} 2 \\ 2-3 \end{array}$                |          |                                                                             | www.                            |   | 70 .0                                       | 1                                       |   | 67 ·7<br>69 ·8                  | $egin{array}{c c} 2-3 & 1 & \end{array}$ |     | 67 · 5<br>69 · 8                            | $<1 \\ 1-2$           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $71 \cdot 2$                                | 6                                                      |          | $\mathbf{Fe}$                                                               | 71 .33                          | ļ | 71.7                                        | 4                                       |   | 71.6                            | 4-5                                      |     | 71 .7                                       | 1                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $71.9 \\ 73.5$                              | 6 3                                                    | ſ        | Fe<br>Fe                                                                    | 71 ·93<br>73 ·48                | ] | 73 ·8                                       | 1                                       |   | 73 .8                           | 1                                        |     | 73 .6                                       | 3                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 75·5                                        | 4                                                      | 1        | $rac{\mathbf{Zr}}{\mathbf{Cr}}$                                            | 73 ·64<br>74 ·96                | Ì | 75·8<br>75·0                                | 3                                       |   | 75.0                            | 5                                        |     | 75.0                                        | <1                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 75.6                                        | 4                                                      |          | —                                                                           |                                 |   | 75 .0                                       | 3                                       |   |                                 |                                          |     | 75 .8                                       | 2                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 77·6                                        | 2                                                      |          | -                                                                           |                                 |   |                                             |                                         |   |                                 |                                          |     | 76 ·3                                       | 1                     | [Faint clos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 78 · 4<br>80 · 4                            | $\frac{2}{2}$                                          |          | Fe                                                                          | 78 ·39                          |   | 78.4 80.5                                   | $\begin{array}{c c} 1 \\ 1 \end{array}$ |   | 80 .2                           | 1-2                                      |     | 78 •4                                       | 2                     | double.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 81 •0                                       | $\frac{2}{2}$                                          |          | -                                                                           |                                 |   |                                             |                                         |   |                                 |                                          |     |                                             |                       | double.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

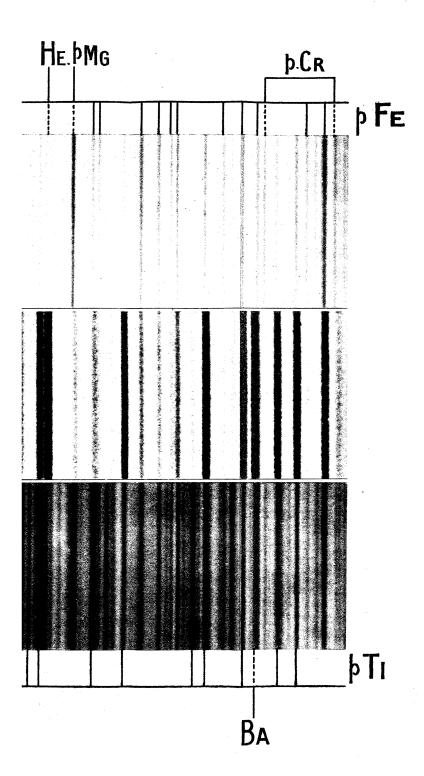
VOL. CCI.—A.

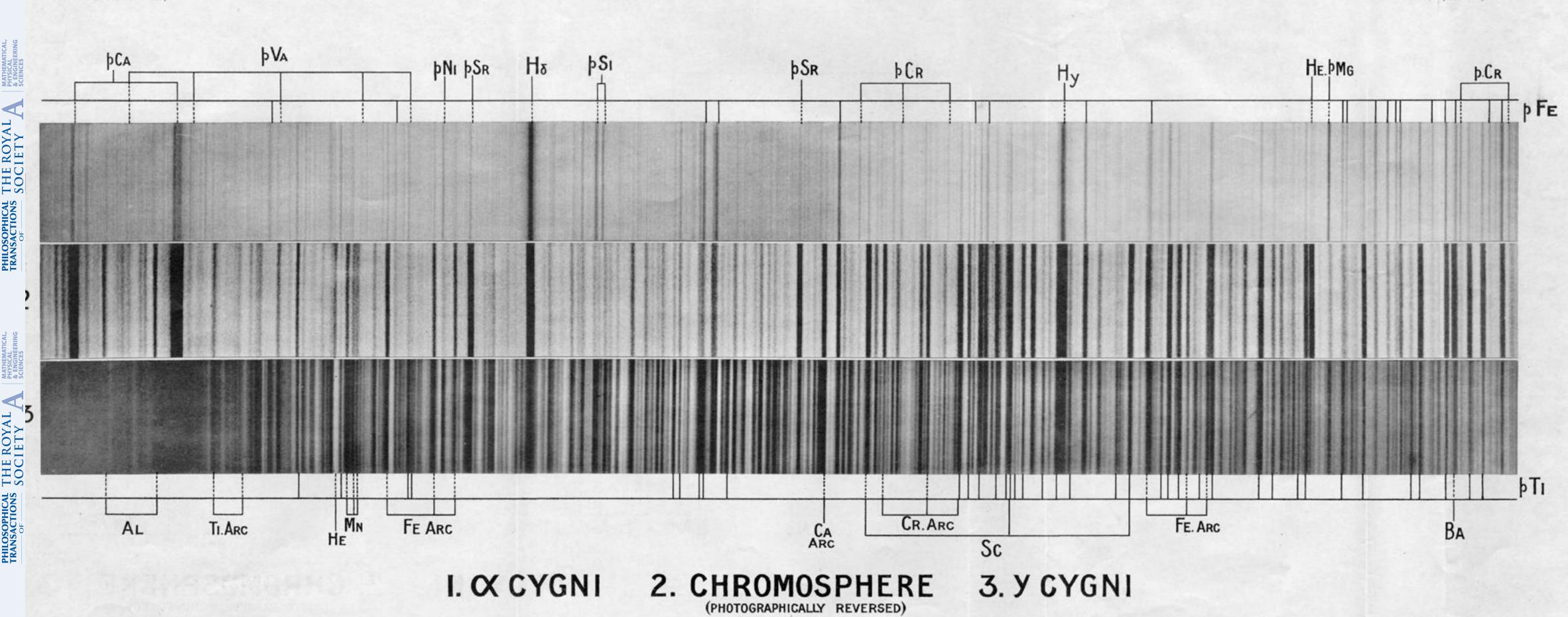
|                  | `                    | Kensington).                                                                   |                             |        | s majoris<br>rvard)                                         | Chromos<br>(Kensing |                                         | α Cyg<br>(Kensing | gton).                                 |                  |
|------------------|----------------------|--------------------------------------------------------------------------------|-----------------------------|--------|-------------------------------------------------------------|---------------------|-----------------------------------------|-------------------|----------------------------------------|------------------|
| λ,               | Intensity. Max. =10. | Probable origin.                                                               | λ of<br>probable<br>origin. | λ.     | Intensity. Max. = 220.                                      | λ.                  | Intensity. Max. =10.                    | λ.                | Intensity. Max. =10.                   | Remarks.         |
| 4282 •8          | 5                    | ∫ Fe                                                                           | 4282 .57                    | } 4282 | .9 1                                                        | 4283 .0             | 2-3                                     | 4282 .8           | 1                                      |                  |
| 84.4             | 2                    | Ca                                                                             | 83 ·17                      | 84     | .4 1                                                        | 4/717.94            |                                         | 84.4              | 2                                      |                  |
| 88.0             | 3-4                  | ? Ti                                                                           | 88 .04                      | 88     | 1 -                                                         | 87 .6               | 1                                       | 86 ·8<br>88 ·3    | <1<br>2                                |                  |
| 90.1             | 9                    | ſ Cr                                                                           | 89 .89                      | 89     |                                                             | 90.2                | 6-7                                     | 90 •4             | 4                                      |                  |
| 92.2             | 1-2                  | 1 p Ti                                                                         | 90 .38                      |        |                                                             |                     |                                         | 92 .4             | 1                                      |                  |
| 94 ·2            | 6                    | $\left\{egin{array}{c} p \ \mathrm{Ti} \ \mathrm{F}\epsilon \end{array} ight.$ | 94 ·20<br>94 ·30            | } 94   | .3 2                                                        | 94 •2               | 5                                       | 94 ·2             | 4                                      |                  |
| 96 .7            | 5                    | p Fe                                                                           | 96 .74                      | 97     | 1 2                                                         | 96 .7               | 2-3                                     | 96 •7             | 4                                      |                  |
| 99 ·4<br>4300 ·2 | 4<br>6               | $egin{array}{c} { m Ti} & { m Fe} \ p & { m Ti} \end{array}$                   | 99 ·41<br>4300 ·21          | 4300   | .2 5                                                        | 4300 ·2             | 5                                       | 4300 · 2          | 5                                      |                  |
|                  | 6                    |                                                                                |                             |        |                                                             | 03.0                | _                                       | 02 ·1             | 2                                      |                  |
| 03 ·3            | 5-6                  | <i>p</i> Fe                                                                    | 03 ·34                      |        | 6 5<br>8 1                                                  | 05.8                | 1-2                                     | 06.0              | 5                                      |                  |
| -                |                      | Ca                                                                             | 07 .91                      | 1      |                                                             | COMMITTE            |                                         | 07.6              | 1                                      |                  |
| 08 •1            | 5                    | { Fe                                                                           | 08.08                       | 8 08   | 0 2                                                         | 08 •1               | 5                                       | 08.1              | 4                                      |                  |
| 09.6             | 5                    | $p_{\mathrm{Fe}}^{\mathrm{Ti}}$                                                | 08 ·10<br>09 ·54            | 09     | .5 2                                                        | Parlament           | E-10 Albany                             | 09 .7             | 1                                      |                  |
| 11 · 3<br>13 · 0 | $\frac{1}{5}$        | p Ti                                                                           | 13 .03                      |        |                                                             | 13.0                | 2                                       | 10 ·9<br>13 ·1    | $\frac{1}{2-3}$                        |                  |
| 14.3             | 7–8                  | Sc                                                                             | 14 .25                      | 1      | ·3 2                                                        | 14.0                | 2                                       |                   | 2-0                                    |                  |
| 15 ·1            | 7-8                  | $\left\{ egin{array}{c} p_{ m Fe}^{ m Ti} \end{array}  ight.$                  | 15 ·13<br>15 ·26            | } 15   | 2 5                                                         | 15 ·1               | 4-5                                     | 15 ·1             | 4                                      |                  |
| 17 .0            | 3-4                  | p Ti                                                                           | 16.96                       |        | $\begin{array}{c c} \cdot 0 & 1 \\ \cdot 6 & 1 \end{array}$ | *******             | annua an                                | 17 ·2             | 1                                      |                  |
| 18.8             | 3-4                  | Ca                                                                             | 18 .82                      | 17     | 1                                                           | 18:3                | 2                                       | months.           |                                        |                  |
|                  |                      | Sc Sc                                                                          | 20.91                       | 1 -    |                                                             |                     | _                                       | 19 .9             | 1                                      |                  |
| 21 .2            | 8                    | 1 p Ti                                                                         | 21 ·20                      | }   21 | .0 3                                                        | 21.2                | ő                                       | 21.2              | 2-3                                    |                  |
| 23 ·4<br>26 ·0   | 1<br>9               | Fe                                                                             | 25 .94                      | 96     | 0 5                                                         | 25 .8               | 6                                       | 26.0              | 3-4                                    | Apparently close |
| 27 ·3            | 2                    | Fe                                                                             | 27 .27                      | 40     | 5                                                           | 20 0                |                                         | 20 0              | 9-4                                    | double.          |
| 30.6             | 7                    | p Ti                                                                           | 30.50                       | 30     | 9 2                                                         | 30.6                | 2-3                                     | 30 .7             | 2                                      |                  |
| 34.0             | 4-5                  | ? La                                                                           | 30.87                       |        |                                                             | 33 .9               | 3                                       |                   |                                        |                  |
| 38·1<br>40·6     | $\frac{9}{10}$       | $p_{ m H}^{ m Ti}$                                                             | 38 ·08<br>40 ·63            |        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$       | 38 ·1<br>40 ·7      | 5<br>10                                 | 38 ·1<br>40 ·7    | 10                                     | $H_{\gamma}$ .   |
| 44.3             | 4-5                  | f p Mn                                                                         | 44 · 19                     | 1      | 7 1                                                         | 44.3                | 3                                       | 44.3              | 2                                      | πγ.              |
| 46.8             | 1                    | $\begin{array}{ccc} & p_{\text{Ti}} \\ & \text{Fe} \end{array}$                | 44 ·45<br>46 ·72            | ]      |                                                             | } 47.4              |                                         | -                 |                                        |                  |
| 48.0             | 1                    | Fe                                                                             | 48.00                       |        |                                                             | 37 4                | <1                                      | 49 1              | 1-2                                    |                  |
| 51 .9            | 7                    | f p Fe Cr                                                                      | 51 .93                      | 1      | 2.0 5                                                       | 51 .9               | 6                                       | 51 .9             | 7                                      |                  |
| 55 .2            | 3-4                  | Mg<br>Ca                                                                       | 52 ·08<br>55 ·26            | ]      | 3 1                                                         | 55 .0               | 1-2                                     | 54.9              | 1                                      |                  |
| 58 .7            | 3                    | $p \mathbf{Y}$                                                                 | 58 ·67<br>58 ·88            |        |                                                             | 59.2                | 3-4                                     | ∫ 57·8<br>—       | 2                                      |                  |
| 59.8             | 3.                   | $\mathbf{Cr}$                                                                  | 59 .78                      | 59     | 9 9                                                         | ]                   |                                         | 60.0              | 1                                      |                  |
| 62 · 3<br>64 · 6 | 1–2<br>1             | p Ni                                                                           | 62 ·40                      |        | -                                                           | 62 ·0<br>64 ·1      | $\begin{array}{c c} 1 \\ 1 \end{array}$ | 62 ·4<br>64 ·0    | $\begin{vmatrix} 1-2\\1 \end{vmatrix}$ |                  |
| -                | _                    |                                                                                | _                           | -      | -                                                           |                     |                                         | 65 .4             | <1                                     |                  |
| 67 .8            | 4                    | $\left\{ egin{array}{c} 	ext{Fe} \ p 	ext{ Ti} \end{array}  ight.$             | 67 ·75<br>67 ·84            |        | .9 1                                                        | 67 8                | 2-3                                     | 67 .9             | 1-2                                    |                  |
| 69.9             | 3                    | Fe                                                                             | 69 .94                      | 70     | $\frac{1}{1}$                                               | 68 · 7<br>70 · 2    |                                         | 69 .9             | 2                                      |                  |
| 71.7             | 2-3                  | _                                                                              | - 05 54                     |        | . 5 1                                                       | - 2                 | 2-0                                     | 71.7              |                                        |                  |

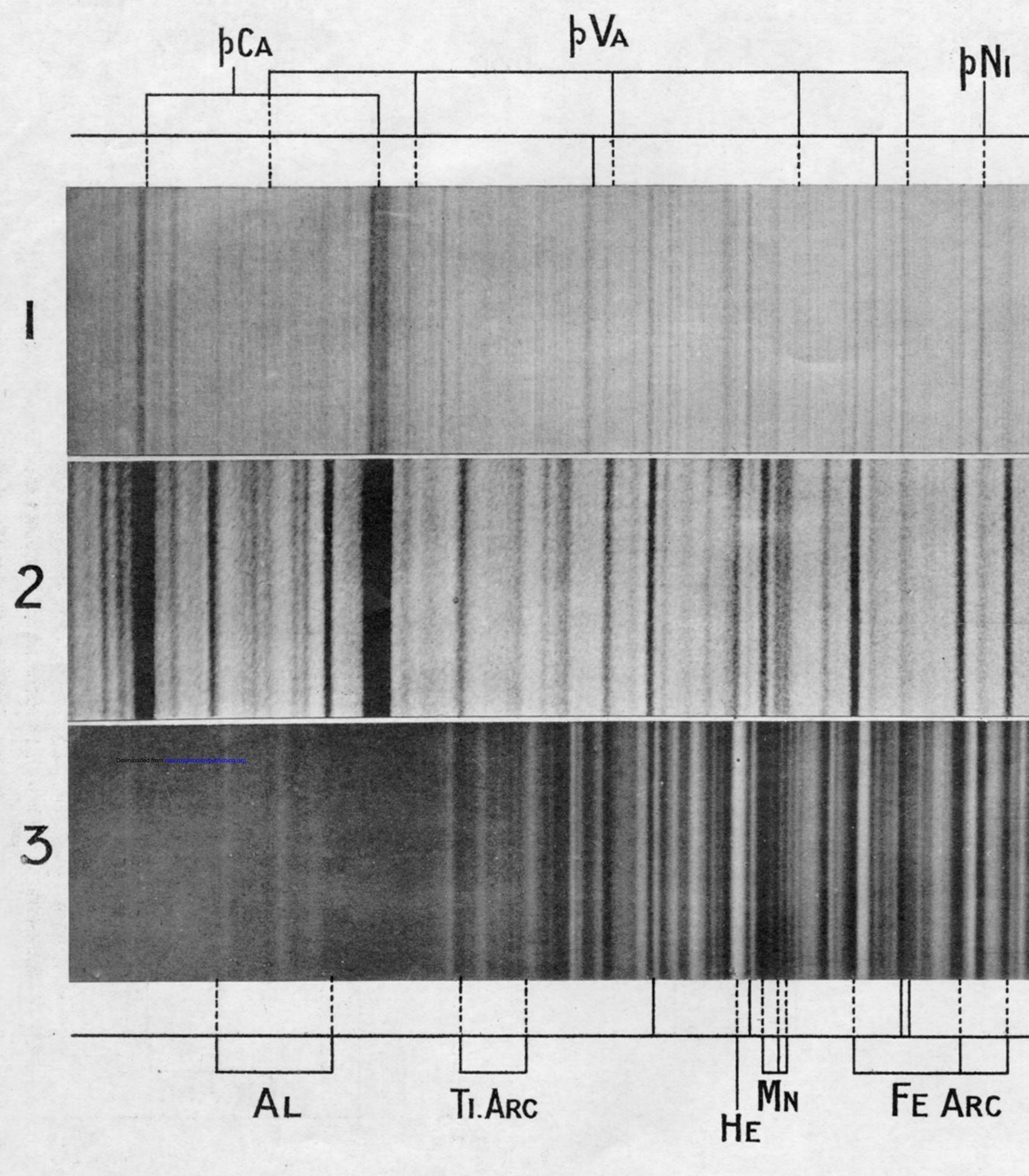

|                |                                         | α Cygn<br>(Kensing        |                                          | Chromosp<br>(Kensing                  |                                                    | δ Canis m<br>(Harvar |                             | Cygni<br>Kensington).                                                                         | γ<br>(1                                           |                            |
|----------------|-----------------------------------------|---------------------------|------------------------------------------|---------------------------------------|----------------------------------------------------|----------------------|-----------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------|
| Remarks.       | Intensity. Max. =10.                    | λ.                        | Intensity. Max. =10.                     | λ.                                    | Intensity. Max. =220.                              | λ.                   | λ of<br>probable<br>origin. | Probable origin.                                                                              | Intensity. Max. =10.                              | λ.                         |
|                | 2                                       | 4374 ·9                   | 7                                        |                                       | ] <sub>9</sub>                                     | 4374 · 7             | 4374 ·63<br>74 ·90          | $\left\{\begin{array}{c}\operatorname{Sc}\\p\operatorname{Ti}\end{array}\right.$              | 8                                                 | 4374 <b>·7</b>             |
|                | _<br><1<br>1                            | 78 ·9<br>80 ·4            | 2                                        | $\begin{bmatrix} -79.7 \end{bmatrix}$ | 1                                                  | 76 ·1<br>79 ·4       | 76·11<br>79·40              | Fe<br>V                                                                                       | 2 3                                               | 76 ·1<br>79 ·4             |
|                | 5-6<br>                                 | 83 ·7<br>85 ·5            | 5 3                                      | 83 ·7<br>85 ·5                        | 8 4                                                | 83 ·7<br>85 ·2       | 83 ·72<br>85 ·55            | $\begin{array}{c} \overline{\text{Fe}} \\ p \text{ Fe} \\ ? \text{ Ti} \end{array}$           | 4-5<br>5-6                                        | 83 · 7<br>85 · 3<br>87 · 0 |
|                | 1                                       | 88 ·1                     | 1-2                                      | 88 ·1                                 | _                                                  |                      | 87 ·01<br>88 ·57            | Fe                                                                                            | 1<br>1                                            | 88.6                       |
|                | 2-3                                     | 91 •0                     | 2-3                                      | 91 ·2                                 | 2                                                  | 90.5                 | 91 ·12<br>91 ·19            | $\left\{ egin{array}{c} 	ext{Fe} \ 	extstyle{p} 	ext{Ti} \ 	extstyle{min} \end{array}  ight.$ | 4                                                 | 91 •2                      |
|                | 1                                       | 93 .6                     |                                          |                                       |                                                    | ,                    | 94 • 22                     | P Ti                                                                                          | 2                                                 | 94 •1                      |
|                | 5                                       | 95 •2                     | 7                                        | 95 •2                                 | 7                                                  | 95.3                 | 95 ·20<br>95 ·41            | $\left\{ egin{array}{c} p_{\mathbf{V}}^{\mathrm{Ti}} \end{array}  ight.$                      | 6                                                 | $95 \cdot 2$               |
| Probably close | 1                                       | 98.0                      |                                          |                                       |                                                    | ·                    | 98 • 18                     | ? Yt                                                                                          | 3                                                 | $98 \cdot 2$               |
| double.        | 3                                       | 99 •9                     | 5-6                                      | 99 •9                                 | 7                                                  | } 4400 •2            | 99 ·94<br>4400 ·55          | $\left\{\begin{array}{c}p\text{ Ti}\\\text{Sc}\end{array}\right.$                             | 5-6                                               | 4400 • 2                   |
|                | $\frac{-}{1}$                           | 4402 .8                   |                                          |                                       | _                                                  |                      |                             |                                                                                               | $egin{array}{cccc} 2 & & & \ 1 & & & \end{array}$ | 01 .0                      |
|                | 1-2                                     | 04.9                      | 4                                        | 4404 ·9                               | 2                                                  | 05 .0                | 04 •93                      | Fe                                                                                            | 3-4                                               | 04.9                       |
|                |                                         |                           | 3                                        | . 08.1                                | 2                                                  | 8.5                  | 08 ·31<br>08 ·58<br>08 ·68  | $\left\{egin{array}{c} V \\ F_{\mathbf{e}} \\ V \end{array}\right.$                           | 3                                                 | 08 •4                      |
|                |                                         |                           |                                          |                                       | _                                                  | ,                    | 09 •29                      | ? Fe                                                                                          | 4                                                 | 09 •3                      |
|                | $\begin{array}{c c} 1 \\ 1 \end{array}$ | $11 \cdot 2$ $13 \cdot 5$ | 1-2                                      | 11 ·2                                 | 2                                                  | 11.5                 | 11 .20                      | p Ti                                                                                          | $\frac{3}{1}$                                     | $11.3 \\ 13.6$             |
|                | $ \begin{array}{c} <1\\5 \end{array} $  | 15 ·3<br>17 ·0            | 4                                        | 15 '3                                 | 4                                                  | 15:3                 | 15 .29                      | $\mathbf{Fe}$                                                                                 | 5-6                                               | 15 .3                      |
|                | 2-3                                     | 17 .9                     | 4-5                                      | 17 .9                                 | 6                                                  | 17 ·9                | 17 .88                      | p Ti                                                                                          | 6-7                                               | <del></del>                |
|                | <1<br>—                                 | 19.5                      |                                          |                                       |                                                    |                      |                             |                                                                                               | <br>1-2                                           | 20.7                       |
|                | 1                                       | 22 .0                     | 3                                        | 22 .7                                 | 3                                                  | 22 .8                | 22 .74                      | $\overline{\mathbf{Fe}} \mathbf{Y}$                                                           | 3-4                                               | $22 \cdot 7$               |
|                |                                         |                           | 1                                        | 25.6                                  |                                                    | 1                    | 25 ·61<br>27 ·27            | Ca<br>Ti                                                                                      | 1                                                 | 25 .6                      |
|                |                                         | 99.7                      | 3                                        | 27 •4                                 | 2                                                  | } 27.4.              | 27 .48                      | $\left\{ egin{array}{c} \mathbf{Ti} \\ \mathbf{Fe} \end{array}  ight.$                        | 3-4                                               | 27 .4                      |
|                | <1<br>                                  | 28 ·7<br>—                | 2-3                                      | 30 · 1                                | 2                                                  | 30 .8                | 30.78                       | Fe                                                                                            | 3                                                 | 30.6                       |
|                |                                         | <br>34 ·4                 |                                          | -                                     |                                                    |                      | 33 .39                      | ${f Fe}$                                                                                      | 1–2                                               | 33 .4                      |
| Probably clos  |                                         |                           | 4-5                                      | 35 · 5                                | 2                                                  | } 35.2               | f 35·13                     | Ca                                                                                            | <br>4-5                                           | <br>35 · 5                 |
| double.        |                                         | -                         |                                          |                                       | _                                                  | 1 20 2               | 35·85<br>38·51              | Fe                                                                                            | 1                                                 | 38 • 5                     |
|                | 1_                                      | <b>41</b> ·8              | 1-2                                      | 41 °8<br>—                            | ] _                                                | $\frac{-}{42}.5$     | 41 ·88<br>42 ·51            | $egin{array}{c} V \ F_{e} \end{array}$                                                        | 1-2<br>4-5                                        | $\frac{41.8}{42.5}$        |
|                | 4-5                                     | 44.0                      | 7                                        | 44.0                                  | 9                                                  | 44.0                 | 43 ·98<br>47 ·30            | p Ti                                                                                          | 9                                                 | 44.0                       |
|                | 1                                       | 47 .8                     | 1                                        | 47 ·0                                 | 1                                                  | } 47.7               | 1 47.80                     | Fe                                                                                            | 3                                                 | 47 .5                      |
|                | 2-3                                     | 50.6                      | 5                                        | 50 °6                                 | 3                                                  | 50.6                 | 50 ·65<br>54 ·95            | p Ti<br>Ca                                                                                    | 4                                                 | 50.7                       |
|                | 2                                       | 5 <b>5 ·</b> 3            | 5                                        | 55 ·0                                 | 2                                                  | } 55·0               | 55 · 30                     | p  Fe                                                                                         | 4-5                                               | 55.0                       |
| ı              | 1-2                                     | 61 .8                     | $\begin{vmatrix} 1-2 \\ 2 \end{vmatrix}$ | 59 ·9                                 | 1                                                  | 60.0                 | 59·30<br>61·82              | Fe                                                                                            | 2-3                                               | 59 ·3                      |
| ı              | 1-2                                     | 64.5                      | $\begin{bmatrix} 3 \\ 2-3 \end{bmatrix}$ | 62 ·3<br>64 ·6                        | $egin{array}{cccccccccccccccccccccccccccccccccccc$ | 62.0                 | 62.17                       | Fe                                                                                            | 5<br><b>3</b>                                     | 62 .0                      |
| İ              |                                         | -                         | <1                                       | 66 .5                                 |                                                    | 64·8<br>—            | 64·62<br>66·73              | $^{p}_{\mathrm{Fe}}^{\mathrm{Ti}}$                                                            | 2                                                 | 64 ·8<br>66 ·7             |
|                | 4                                       | 68 .7                     | 6                                        | 68 · <b>7</b>                         | 3                                                  | 69.5                 | 68 •66                      | $egin{array}{c} p \ \mathrm{Ti} \ \mathbf{Ni} \ \mathbf{Zr} \end{array}$                      | 6                                                 | 68.7                       |


#### SIR NORMAN LOCKYER AND MR. F. E. BAXANDALL

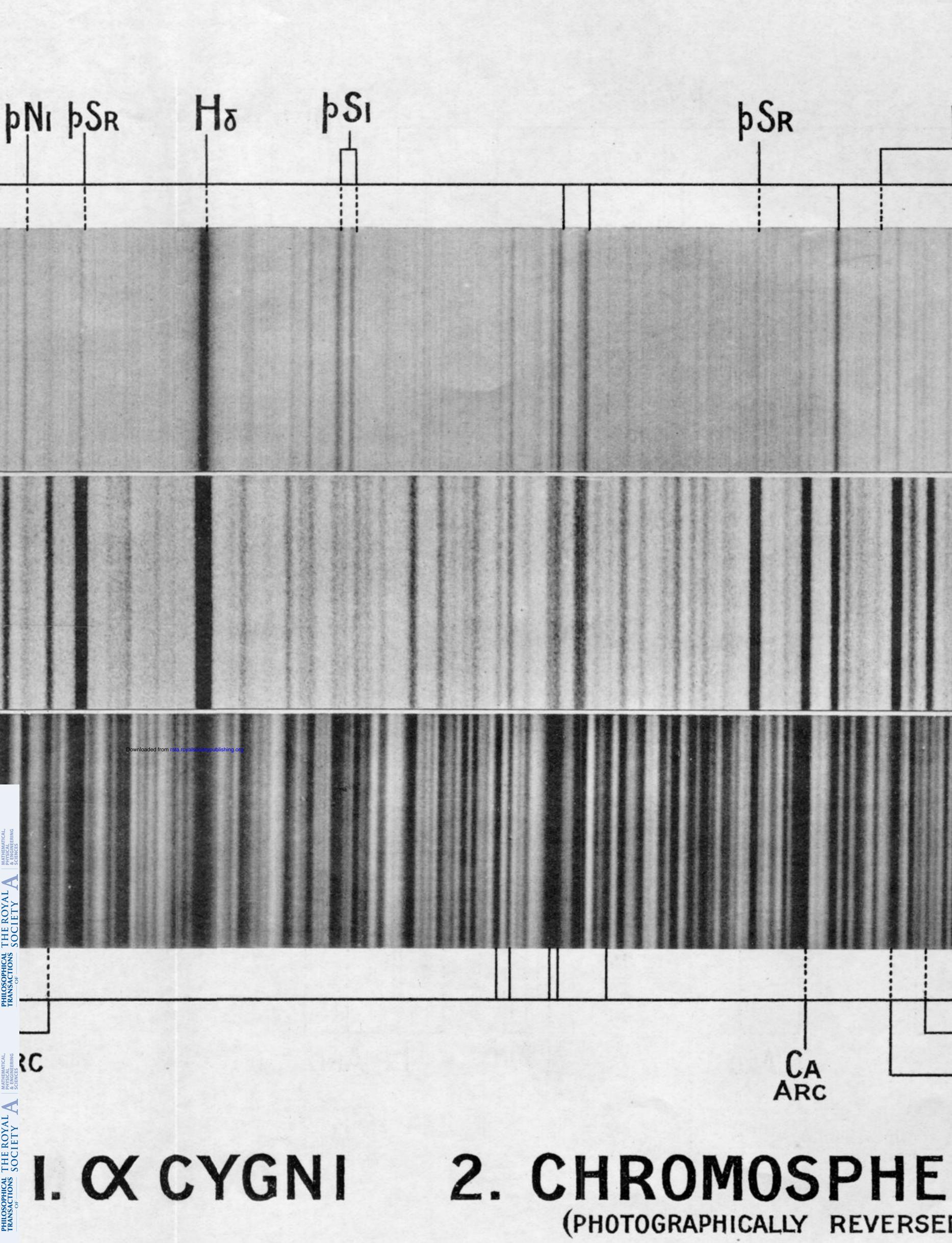

|            | α Cygni<br>(Kensington).                  |                                 | Chromosphere (Kensington).             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | δ Canis majoris<br>(Harvard). |                |                                                |                                                                         |                                         | γ Cygni<br>(Kensington).        |  |  |
|------------|-------------------------------------------|---------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------|------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------|---------------------------------|--|--|
| Remarks.   | Intensity. Max. =10.                      | λ.                              | Intensity. Max. =10.                   | λ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Intensity. Max. = 220.        | λ.             | λ of<br>probable<br>origin.                    | Probable<br>origin.                                                     | Intensity. Max. =10.                    | λ.                              |  |  |
| Probably H | 1-2                                       | 4471 ·6                         |                                        | AND THE PROPERTY OF THE PROPER |                               | ya             |                                                |                                                                         |                                         | -                               |  |  |
| \ 4471.65. | 1-2                                       | 73 ·1                           |                                        | nena                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                             | 4473 .0        | 4472 .88                                       | $\mathbf{Fe}$                                                           | 2-3                                     | 4473 .0                         |  |  |
|            |                                           |                                 | 3                                      | 4476 .2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                             | 76.2           | 76 ·19                                         | Fe                                                                      | 3                                       | 76 .2                           |  |  |
|            | 8                                         | 81.3                            | 1-2                                    | 80 •6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                             | 82 .0          | 80 ·31<br>81 ·30                               | $_{p~\mathrm{Mg}}^{\mathrm{Fe}}$                                        | $\begin{array}{c} 2 \\ 5-6 \end{array}$ | 80 ·3<br>81 ·3                  |  |  |
|            |                                           |                                 | 4                                      | 82 ·3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                |                                                | Fe                                                                      | 1-2                                     | 82 .3                           |  |  |
|            | <1<br><1                                  | 84·0<br>86·6                    | ******                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                |                                                |                                                                         | 1                                       | 85 .2                           |  |  |
|            | 3                                         | 89 .0                           | 3                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                | 88 •49                                         | p Ti                                                                    | 4                                       | 88 •6                           |  |  |
|            | 3-4                                       | 91 .6                           | 2-3                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3<br>3                        | 89 ·6<br>91 ·6 | 89 ·35<br>91 ·57                               | $\frac{p}{p} \frac{\text{Fe}}{\text{Fe}}$                               | $\frac{4}{3}$                           | 89 ·4<br>91 ·6                  |  |  |
|            | t                                         | O                               | 2 2                                    | 94.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                             | 94.8           | 94.74                                          | Fe Fe                                                                   | 3-4                                     | 94 .7                           |  |  |
|            |                                           | Ministra                        | - Names                                | 96 •8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                             | 97.0           |                                                |                                                                         | 3-4                                     | 97 .6                           |  |  |
|            | 3-4                                       | 4501 .5                         | 7                                      | 4501 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                             | 4501 .5        | 4501 .45                                       | p Ti                                                                    | $\frac{1}{6}$                           | 99 ·6<br>4501 ·5                |  |  |
|            |                                           |                                 |                                        | one constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                               |                |                                                | time reserve                                                            | 1                                       | 07.0                            |  |  |
|            | $ \begin{array}{c} 5 \\ < 1 \end{array} $ | $08.5 \\ 12.3$                  | 5                                      | 08·5<br>12·3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3                             | 08.5           | $08.46 \\ 12.91$                               | $p_{ m Ti}^{ m Fe}$                                                     | $\frac{4}{1}$                           | $08.5 \\ 12.9$                  |  |  |
|            | 5                                         | 15.5                            | 4                                      | 15.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                             | 15.4           | 15.51                                          | p Fe                                                                    | 4                                       | 15.5                            |  |  |
|            | $\frac{1}{4}$                             | $\frac{18 \cdot 2}{20 \cdot 4}$ | $\begin{vmatrix} 1 \\ 3 \end{vmatrix}$ | 18·3<br>20·4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                             | 23 .0          | 18 ·20<br>20 ·40                               | $\begin{array}{c} \operatorname{Ti} \\ p \operatorname{Fe} \end{array}$ | $\frac{2}{3}$                           | $\frac{18 \cdot 2}{20 \cdot 4}$ |  |  |
|            | 5                                         | 22.7                            | 4                                      | 22 .7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                             | 22.9           | 22 69                                          | p Fe                                                                    | 4                                       | 22.8                            |  |  |
|            | <1                                        | 25 · 5                          | 3                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                | 27 .49                                         | Ti<br>Fe                                                                | 2                                       | 25.3 $28.8$                     |  |  |
|            | 1                                         | 29 .6                           | 9                                      | 28 .8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                             | 28 ·8          | 28 ·80<br>29 ·85                               | ? Fe                                                                    | 2                                       | 29.5                            |  |  |
|            |                                           | annual con                      | 1                                      | 31.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                             | } 31.2         | 31 ·12                                         | ſ Co                                                                    | 2                                       | 31 ·2                           |  |  |
|            | <1                                        | 32 .2                           |                                        | Marriera.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               | ]              | 31 .33                                         | Fe                                                                      |                                         | ******                          |  |  |
|            | 5                                         | 34 ·1                           | 7-8                                    | 34.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                             | 34 · 2         | 34·14<br>35·74                                 | p Ti                                                                    | 6                                       | 34 ·1                           |  |  |
|            |                                           | en-realized                     | 2                                      | 35.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               | } —            | $\begin{vmatrix} 36.09 \\ 36.22 \end{vmatrix}$ | Ti                                                                      | 2–3                                     | 36.0                            |  |  |
|            | <1                                        | <b>38 ·</b> 8                   |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | J              |                                                |                                                                         |                                         |                                 |  |  |
|            | 3                                         | 41 .4                           | $\begin{vmatrix} 1-2\\3 \end{vmatrix}$ | 40 ·0<br>41 ·7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                             | 41.6           | 41 .40                                         | p Fe                                                                    | 3<br>4                                  | $40.1 \\ 41.4$                  |  |  |
|            | <1                                        | 45.0                            | 3                                      | 44.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                             | } 44.9         | 44 .79                                         | f Cr                                                                    | 4                                       | 44.8                            |  |  |
|            | <1                                        | 47.2                            |                                        | SEE O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                             | J              | 44 ·86<br>48 ·02                               | Ti<br>Fe                                                                | 1-2                                     | 48.0                            |  |  |
|            | 7                                         | 49.8                            | 7-8                                    | 49 .7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                             | } 49.7         | 49 .64                                         | f p Fe                                                                  | 8                                       | 49 .7                           |  |  |
|            |                                           | 52.8                            | 7-0                                    | 49 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                             | J 49.7         | 49.81                                          | Ti P Ti                                                                 | 2                                       | 52.6                            |  |  |
|            | <1                                        | 94 8                            | 7-8                                    | 64.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )                             | 54·2           | 52 ·63<br>54 ·21                               | Ba                                                                      | 5-6                                     | 54.2                            |  |  |
|            | 2<br>5                                    | $55.3 \\ 56.1$                  | 3-4                                    | $\left\{\begin{array}{c} -56.1 \end{array}\right.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                             | } 56.0         | 56.06                                          | $\left\{\begin{array}{cc} p_{\mathrm{Fe}} \end{array}\right.$           | 5-6                                     | 56 •2                           |  |  |
|            | 5                                         | 58.8                            | 3-4                                    | 58.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                             | 58.9           | 56 ·31<br>58 ·83                               | $\begin{array}{c} \mathbf{Fe} \\ p \ \mathbf{Cr} \end{array}$           | 3                                       | 58 .8                           |  |  |
|            | 1                                         | 61.6                            | <1                                     | 61 .3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               | Automore       |                                                | Manager .                                                               | 1                                       | 61.6                            |  |  |
|            | 3                                         | 63 .9                           | 7-8                                    | 63 .9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                             | 1 64 0         | 63 ·94<br>65 ·69                               | r Ti                                                                    | 4-5                                     | 63 •9                           |  |  |
|            | <1                                        | 66 .0                           | 1                                      | 66 .3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               | } —            | 65 .84                                         | Co Fe                                                                   | 3                                       | 65.8                            |  |  |
|            | <1<br><1                                  | 68 ·0<br>70 ·6                  |                                        | manuser .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                | 68 .94                                         | Fe                                                                      | 3                                       | 68 .9                           |  |  |
|            | 4                                         | $72 \cdot 2$                    | 7                                      | 72 .2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                             | 72 .2          | 72 ·16                                         | p Ti                                                                    | 6-7                                     | $72 \cdot 2$                    |  |  |
|            | <1<br>3-4                                 | 74·9<br>76·5                    | $\frac{}{3}$                           | 76.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                             | 76.5           | 74 ·90<br>76 ·51                               | Fe                                                                      | $\frac{1}{3}$                           | $74.9 \\ 76.5$                  |  |  |
|            | <1                                        | 77.2                            |                                        | 76.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                             | 76·5<br>—      | 70.91                                          | p Fe                                                                    |                                         | 10 9                            |  |  |
|            | 2                                         | 80 .3                           | 2                                      | 80.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                             | 80.0           | 80.59                                          | ∫ V<br>TE N:                                                            | 3-4                                     | 80.6                            |  |  |
|            | 2                                         | 83.0                            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | J              | 80.76                                          | Fe Ni                                                                   |                                         | -                               |  |  |


|                        | γ Cygni<br>(Kensington).                  |                                                                                    |                               | δ Canis m<br>(Harva                               |                                     | Chromos <sub>l</sub><br>(Kensing                                  |                                         | α Cyg<br>(Kensing | ni<br>ton).                                 |                                                                    |
|------------------------|-------------------------------------------|------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------|-------------------------------------|-------------------------------------------------------------------|-----------------------------------------|-------------------|---------------------------------------------|--------------------------------------------------------------------|
| λ.                     | Intensity. Max. =10.                      | Probable origin.                                                                   | λ of<br>probable<br>origin.   | λ.                                                | Intensity. Max. = 220.              | λ.                                                                | Intensity. Max. =10.                    | λ.                | Intensity. Max. =10.                        | Remarks.                                                           |
| 4584 •0                | 8                                         | p Fe                                                                               | 4584 .02                      | 4584 · 0<br>86 · 1                                | 5<br>1                              | 4584 .0                                                           | 7                                       | 4584 ·0<br>86 ·0  | 7<br><1                                     |                                                                    |
| 88 ·4<br>90 ·2         | 3<br>2-3                                  | $p \operatorname{Cr} p \operatorname{Ti}$                                          | 88 ·38<br>90 ·13              |                                                   | _                                   | 88 ·4<br>90 ·1                                                    | 3                                       | 88 ·4<br>90 ·2    | 4<br>1-2                                    |                                                                    |
| 92 . 5                 | 3-4                                       | $igg  igg\{ egin{array}{c} p_{	ext{Fe}}^{	ext{ Cr}} \ \end{array}$                 | 92 ·25<br>92 ·84              | 92.8                                              | 1                                   | 92 ·5                                                             | 3                                       | 92 · 5            | 2-3                                         |                                                                    |
| 94·1<br>95·6           | 1<br>1                                    | P V<br>Fe                                                                          | 94·30<br>95·54                | 95 .9                                             | 2                                   | 95 ·1                                                             | 2                                       |                   | _                                           |                                                                    |
| 98.1                   | 1                                         | ? Fe                                                                               | 98 ·30                        | en mente                                          |                                     |                                                                   |                                         | 96.6              | 1-2                                         |                                                                    |
| 4600 · 7               | 2                                         | Fe                                                                                 | 4603 13                       | •                                                 |                                     | 4600 ·8<br>03 ·0                                                  | 3 2                                     |                   |                                             | • .                                                                |
| 05 · 2<br>13 · 9       | $\begin{array}{c c} 1 \\ 2-3 \end{array}$ | Ni<br>—                                                                            | 05 ·17                        | 4613 · 5                                          | 1                                   | 05 · 5                                                            | $\begin{array}{c c} 2 \\ 2 \end{array}$ |                   |                                             |                                                                    |
| 16.9                   | 3-4                                       | $\int \operatorname{Fe} p \operatorname{Cr} \operatorname{Fe} p \operatorname{Cr}$ | 16 ·80<br>18 ·97              | $\begin{array}{c c} & 16.9 \\ & 19.2 \end{array}$ | 1 4                                 | 19.0                                                              | 3-4                                     | 4616 ·8           | 3                                           | ? double.                                                          |
| 20 .2                  | 3-4                                       | Fe —                                                                               | 19.47                         | 19.2                                              | _                                   |                                                                   |                                         | 21.1              | -2                                          |                                                                    |
|                        |                                           |                                                                                    |                               |                                                   |                                     |                                                                   |                                         | 23 · 5<br>24 · 9  | <1<br>1                                     |                                                                    |
| 26·2<br>29·5           | $\frac{2}{6}$                             | p Fe Ti Co                                                                         | 26 · 36<br>29 · 52            | 25 ·8<br>29 ·9                                    | $egin{array}{c} 1 \\ 4 \end{array}$ | 29.5                                                              | 5-6                                     | 26 ·6<br>29 ·6    | $\begin{array}{c c} 1 \\ 5-6 \end{array}$   |                                                                    |
| 32 ·8<br>34 ·2         | 1-2<br>2-3                                | $p \stackrel{-}{\operatorname{Cr}}$                                                | 34 .25                        | 34.8                                              | 1                                   | 32 ·8<br>34 ·3                                                    | 1-2<br>1-2                              | 32 ·6<br>34 ·3    | $\begin{vmatrix} 1 \\ 3 \end{vmatrix}$      |                                                                    |
|                        | _                                         | -                                                                                  |                               |                                                   |                                     |                                                                   |                                         | 35 ·6<br>38 ·9    | $\begin{array}{c c} 2 \\ 1 \end{array}$     | •                                                                  |
| 42.6                   | 1                                         |                                                                                    |                               |                                                   |                                     | 42.8                                                              | 1                                       |                   |                                             | (Band probably                                                     |
| 46 · 3<br>to<br>49 · 0 |                                           | $\left\{\begin{array}{c} \text{Cr} \\ \text{Fe} \\ \text{Ni} \end{array}\right.$   | 46 · 35<br>47 · 62<br>48 · 84 | 46 ·3<br><br>48 ·9                                | $\frac{1}{1}$                       | 46 ·3<br>—<br>48 ·4                                               | $\frac{4-5}{2}$                         |                   |                                             | consisting of the three wellmarked solar lines whose λλ are given. |
| 52 · 5<br>55 · 3       | 3 2                                       | Cr                                                                                 | 52 ·34                        |                                                   | _                                   | 51 ·8<br>55 ·4                                                    | 3-4                                     |                   |                                             | C are given.                                                       |
| 57 ·4<br>60 ·6         | 4-5<br>1                                  | p Ti                                                                               | 57 :38                        | 57 .0                                             | 4                                   | 57 .4                                                             | 3-4                                     | 57 ·4<br>60 ·8    | 2                                           |                                                                    |
| 63.6                   | 2-3                                       |                                                                                    |                               | 63 .7                                             | 2                                   | 64.5                                                              | 2                                       | 63 ·8<br>66 ·5    | $\begin{array}{c c} <1 \\ 2 \\ \end{array}$ |                                                                    |
| 67 .4                  | 8                                         | {                                                                                  | 67 ·63<br>67 ·77              | 68.0                                              | 3                                   | 67 .6                                                             | 3-4                                     | 67 • 2            | <1<br>2-3                                   |                                                                    |
| 70 · 4                 | 7                                         | Sc                                                                                 | 70 .4*                        | 70.0                                              | 3                                   | 70.8                                                              | 3-4                                     | 70.5              | 2                                           | *THALEN'S spark  \[ \lambda \text{ corrected to} \]                |
| 73 · 5<br>75 · 6       | 1 1-2                                     | Fe<br>? Ti                                                                         | 73 ·35<br>75 ·29              |                                                   | _                                   | 74·0<br>76·0                                                      | 1 1                                     | 73 · 5            | <1                                          | ROWLAND.                                                           |
| 78 ·1<br>82 ·5         | 3 3-4                                     | P Cd<br>p Y                                                                        | 78 · 35<br>82 · 60            | 79·0<br>82·2                                      | 1                                   | 82.5                                                              | 2-3                                     |                   | _                                           |                                                                    |
| 86 ·0<br>89 ·2         | 1 1                                       | <i>p</i> 1                                                                         |                               | - SZ Z                                            |                                     |                                                                   | 2-3                                     | s. manning        |                                             |                                                                    |
| 91.6                   | 1-2                                       | Ti<br>Fe                                                                           | 91 ·52<br>91 ·61              | 91.6                                              | 1                                   | 91.6                                                              | 3                                       |                   |                                             |                                                                    |
| 99 ·6<br>4703 ·4       | 4-5<br>4-5                                | Mg                                                                                 | 4703 ·18                      | 98·8<br>4703·1                                    | $\frac{1}{2}$                       | $99.5 \\ 4703.2$                                                  | 2-3<br>3-4                              |                   |                                             |                                                                    |
| 08.6                   | 5                                         | _                                                                                  |                               | 09 0                                              | 3                                   | $\left\{\begin{array}{c} 37.8 \\ 07.8 \\ 09.6 \end{array}\right.$ | 2-3<br>2-3                              | } _               |                                             | Broad and hazy.                                                    |
| 15 ·0<br>17 ·8         | 3<br>1-2                                  |                                                                                    | ******                        | 14.5                                              | 1_                                  | 18.5                                                              | 1                                       | _                 |                                             |                                                                    |
| 19 .6                  | 3 3                                       | Militaria.                                                                         |                               | 20 · 5<br>27 · 6                                  | 1                                   | 27.7                                                              | $\frac{1}{2}$                           |                   | _                                           | ·                                                                  |
|                        | 1                                         |                                                                                    |                               | 0                                                 |                                     |                                                                   | -                                       |                   |                                             | ·                                                                  |


|                                                                          | (I                                                                                                                                                                                             | γ Cygni<br>Kensington). |                             | δ Canis m<br>(Harva                                                              |                                                                    | Chromosp<br>(Kensing                                                                                                                                                   |                                       | α Cygni<br>(Kensington). |                      |                           |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------|----------------------|---------------------------|
| λ.                                                                       | Intensity. Max. =10.                                                                                                                                                                           | Probable origin.        | λ of<br>probable<br>origin. | λ.                                                                               | Intensity. Max. $= 220$ .                                          | λ.                                                                                                                                                                     | Intensity. Max. =10.                  | λ.                       | Intensity. Max. =10. | Remarks.                  |
| 4731 · 3<br>34 · 1<br>37 · 6<br>40 · 9<br>44 · 9<br>48 · 6<br>52 · 2<br> | 4<br>2-3<br>4<br>1<br>1<br>1-2<br>2<br>-<br>3<br>7<br>1<br>2<br>3-4<br>2-3<br>2-3<br>2-3<br>2-3<br>3<br>7<br>2<br>3<br>4<br>2-3<br>2-3<br>2-3<br>2-3<br>2-3<br>2-3<br>2-3<br>2-3<br>2-3<br>2-3 | 7: Fe                   | 4733 ·78                    | 4731·7  37·0   54·2   64·1   71·8  80·1   86·8  98·7  4805·2   24·0   48·4  55·7 | 1<br>1<br>-<br>1<br>-<br>8<br>-<br>1<br>1<br>1<br>2<br>3<br>-<br>5 | 4731 ·4 33 ·8 37 ·0 40 ·5 45 ·5 48 ·0 — 67 ·0 — 79 ·9 83 ·1 86 ·7 98 ·7 98 ·7 4805 ·2 11 ·0 24 ·3 40 ·4 48 ·6 -6 -6 -6 -6 -6 -6 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 | 3-4<br>1<br>3<br>2<br>1<br>1<br>1<br> | 4731 ·7                  | 3 · 4                | { Broad, probably double. |
| 61 5                                                                     | 8                                                                                                                                                                                              | H                       | 61 ·49                      |                                                                                  | - e                                                                | 61 .2                                                                                                                                                                  | 10                                    | 61 ·5                    | 10                   | ${ m H}_{m eta}$          |












OSOPHICAL THE ROYANSACTIONS SOCIETY





THE ROYAL MAHEMATICAL MAHEMATI

OPHICAL THE ROYAL A PHYSICAL ACTIONS COLLETY